Development of Sorghum Flour-Based Edible Straws with Bovine Gelatin and Variations in Carboxymethyl Cellulose Concentration

Deli Silvia, Arifin Agung Setia Budi, Nabila Salma Marshanti, Dextra Syakiella Arumdapta

Abstract

Single-use plastic straw pollution is driving the need for environmentally friendly alternatives. This study aims to develop and characterize edible straws based on sorghum flour with the addition of bovine gelatin and analyze the effect of variations in Carboxymethyl Cellulose (CMC) concentration. A completely randomized design (CRD) was used in a non-factorial format with four levels of CMC concentration (0%, 1%, 3%, and 5%), each with three replications. The straws are made through mixing, semi-wet molding, and two-stage oven drying at 60 °C. The product’s characteristics were tested, including water resistance, absorption, moisture content, organoleptic properties, and biodegradability. Data were analyzed using Analysis of Variance (ANOVA) and Duncan’s Multiple Range Test (DMRT) to determine significant differences between treatments. The analysis showed that adding 3% CMC (C3) produced the optimal formulation, exhibiting the highest water resistance of 63.21 minutes in cold water, the lowest water absorption of 26.2%, and a final moisture content of 8.7%. This formulation also received the highest scores in organoleptic tests for color, aroma, taste, and texture. In contrast, 5% CMC caused the dough to become stiff. Straws show the best resistance to cold water temperatures, followed by normal temperatures. The key finding of this study is that all straw formulations can be fully decomposed (100%) in soil media within 15 days. It was concluded that this sorghum flour-based edible straw has excellent potential to replace conventional plastic straws as a functional and environmentally friendly alternative.

Keywords

biodegradability; Carboxymethyl Cellulose (CMC); eco-friendly; edible straw; sorghum

Full Text:

PDF

References

Agumba, D., Pham, D., & Kim, J. (2023). Ultrastrong, hydrostable, and degradable straws derived from microplastic-free thermoset films for sustainable development. ACS Omega, 8(8), 7968–7977. https://doi.org/10.1021/acsomega.2c07797

Aksun Tümerkan, E. T. (2021). Sustainable utilization of gelatin from animal-based agri-food waste for the food industry and pharmacology. Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges, pp. 425–442. Elsevier. https://doi.org/10.1016/B978-0-12-824044-1.00041-6

Andreazza, R., Morales, A., Pieniz, S., & Labidi, J. (2023). Gelatin-based hydrogels: Potential biomaterials for remediation. Polymers, 15(4), 1026. https://doi.org/10.3390/polym15041026

Anggraini, L., Rosida, D. F., & Wicaksono, L. A. (2022). Kemampuan laju transmisi uap dan biodegradasi edible straw dari pati umbi (ganyong, garut, kimpul) dan gelatin ikan. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 10(3), 226–235. https://doi.org/10.21776/ub.jkptb.2022.010.03.06

Avif, A. N., & Td, A. O. (2020). Analisis sifat kimia tepung dan pati sorgum dari varietas bioguma dan lokal di Provinsi Nusa Tenggara Timur, Indonesia. Lantanida Journal, 8(2), 178–188. https://doi.org/10.22373/lj.v8i2.8120

Bangar, S. P., Kumar, M., & Whiteside, W. S. (2021). Mango seed starch: A sustainable and eco-friendly alternative to increasing industrial requirements. International Journal of Biological Macromolecules, 183, 1807–1817. https://doi.org/10.1016/j.ijbiomac.2021.05.157

Biduski, B., Silva, F. T. da, Silva, W. M. da, Halal, S. L. de M. El, Pinto, V. Z., Dias, A. R. G., & Zavareze, E. da R. (2017). Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chemistry, 214, 53–60. https://doi.org/10.1016/j.foodchem.2016.07.039

Cahyadi, W., Garnida, Y., & Nurcahyani, F. (2020). Perbandingan tepung sorgum (Sorgum bicolor L. Moench) dengan tepung umbi ganyong (Canna edulis) dan konsentrasi gliserol monostearate terhadap mutu cookies non gluten fortifikasi. Pasundan Food Technology Journal, 7(1), 17–25. https://doi.org/10.23969/pftj.v7i1.2694

Chang, L., & Tan, J. (2021). An integrated sustainability assessment of drinking straws. Journal of Environmental Chemical Engineering, 9(4), 105527. https://doi.org/10.1016/j.jece.2021.105527

Chen, Y., Awasthi, A. K., Wei, F., Tan, Q., & Li, J. (2021). Single-use plastics: Production, usage, disposal, and adverse impacts. Science of The Total Environment, 752, 141772. https://doi.org/10.1016/j.scitotenv.2020.141772

Chitaka, T. Y., Russo, V., & von Blottnitz, H. (2020). In pursuit of environmentally friendly straws: A comparative life cycle assessment of five straw material options in South Africa. The International Journal of Life Cycle Assessment, 25(9), 1818–1832. https://doi.org/10.1007/s11367-020-01786-w

Choeybundit, W., Karbowiak, T., Lagorce, A., Ngiwngam, K., Auras, R., Rachtanapun, P., ... & Tongdeesoontorn, W. (2024). Eco-friendly straws: A fusion of soy protein isolate and cassava starch coated with beeswax and shellac wax. Polymers, 16(13), 1887. https://doi.org/10.3390/polym16131887

Duru, R. U., Ikpeama, E. E., & Ibekwe, J. A. (2019). Challenges and prospects of plastic waste management in Nigeria. Waste Disposal & Sustainable Energy, 1(2), 117–126. https://doi.org/10.1007/s42768-019-00010-2

Embrandiri, A., Kassaw, G., Geto, A. K., Wogayehu, B., & Embrandiri, M. (2021). The menace of single use plastics: Management and challenges in the African context. Waste Management, Processing and Valorisation, 1–21. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-7653-6_1

Fairuza, T. A., & Amertaningtyas, D. (2024). The effect of gelatin on water holding capacity, water activity, water content, and randement of chicken-liver meatball. BIO Web of Conferences, 88, 00016. https://doi.org/10.1051/bioconf/20248800016

Ferreira, J., Ferreira, C., & Bos, E. (2021). Spaces of consumption, connection, and community: Exploring the role of the coffee shop in urban lives. Geoforum, 119, 21–29. https://doi.org/10.1016/j.geoforum.2020.12.024

Folino, A., Pangallo, D., & Calabrò, P. S. (2023). Assessing bioplastics biodegradability by standard and research methods: Current trends and open issues. Journal of Environmental Chemical Engineering, 11(2), 109424. https://doi.org/10.1016/j.jece.2023.109424

Forsido, S. F., Welelaw, E., Belachew, T., & Hensel, O. (2021). Effects of storage temperature and packaging material on physico-chemical, microbial and sensory properties and shelf life of extruded composite baby food flour. Heliyon, 7(4), e06821. https://doi.org/10.1016/j.heliyon.2021.e06821

Gong, Y., Xiao, S., Yao, Z., Deng, H., Chen, X., & Yang, T. (2024). Factors and modification techniques enhancing starch gel structure and their applications in foods: A review. Food Chemistry: X, 24, 102045. https://doi.org/10.1016/j.fochx.2024.102045

Gutierrez, J. N., Royals, A. W., Jameel, H., Venditti, R. A., & Pal, L. (2019). Evaluation of paper straws versus plastic straws: Development of a methodology for testing and understanding challenges for paper straws. BioResources, 14(4), 8345–8363. https://doi.org/10.15376/biores.14.4.8345-8363

Hashmi, M., Ullah, S., Ullah, A., Akmal, M., Saito, Y., Hussain, N., ... & Kim, I. S. (2020). Optimized loading of carboxymethyl cellulose (CMC) in tri-component electrospun nanofibers having uniform morphology. Polymers, 12(11), 2524. https://doi.org/10.3390/polym12112524

Ismanto, H. (2023). Uji organoleptik keripik udang (L. vannamei) hasil penggorengan vakum. Jurnal AgroSainTa: Widyaiswara Mandiri Membangun Bangsa, 6(2), 53–58. https://doi.org/10.51589/ags.v6i2.3137

Khalifa, M., & Eltahir, E. A. B. (2023). Assessment of global sorghum production, tolerance, and climate risk. Frontiers in Sustainable Food Systems, 7, 1184373. https://doi.org/10.3389/fsufs.2023.1184373

Lisa, M., Lutfi, M., & Susilo, B. (2015). Pengaruh suhu dan lama pengeringan terhadap mutu tepung jamur tiram putih (Plaerotus ostreatus). Journal of Tropical Agricultural Engineering and Biosystems-Jurnal Keteknikan Pertanian Tropis dan Biosistem, 3(3), 270–279. https://doi.org/10.21776/jkptb.v3i3.293

Mandal, M., Roy, A., Popek, R., & Sarkar, A. (2024). Micro- and nano- plastic degradation by bacterial enzymes: A solution to “White Pollution.” The Microbe, 3, 100072. https://doi.org/10.1016/j.microb.2024.100072

Murniati, N. (2020). The effect of no plastic straw movement on Vokasi Universitas Indonesia students attitude. AIPHC 2019: Proceedings of the Third Andalas International Public Health Conference, p. 151. European Alliance for Innovation. https://doi.org/10.4108/eai.9-10-2019.2297231

Nahdi, M. S., Nurkolis, F., Dewi, R. S., Nurrezkytaku, A. Y., Fitriani, N. R., Sanjaya, A. R. D. P., ... & Saptari, S. A. (2022). SARS edible straw from sea grapes as an effort utilization of marine resources for health. Open Access Macedonian Journal of Medical Sciences, 10(E), 1408–1414. https://doi.org/10.3889/oamjms.2022.9663

Pirsa, S., & Hafezi, K. (2023). Hydrocolloids: Structure, preparation method, and application in food industry. Food Chemistry, 399, 133967. https://doi.org/10.1016/j.foodchem.2022.133967

Qiu, N., Sha, M., & Xu, X. (2021). Evaluation and future development direction of paper straw and plastic straw. IOP Conference Series: Earth and Environmental Science, 1011(1), 012029. https://doi.org/10.1088/1755-1315/1011/1/012029

Rahman, M. S., Hasan, M. S., Nitai, A. S., Nam, S., Karmakar, A. K., Ahsan, M. S., ... & Ahmed, M. B. (2021). Recent developments of carboxymethyl cellulose. Polymers, 13(8), 1345. https://doi.org/10.3390/polym13081345

Rather, J. A., Akhter, N., Ashraf, Q. S., Mir, S. A., Makroo, H. A., Majid, D., Barba, F. J., ... & Dar, B. N. (2022). A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Packaging and Shelf Life, 34, 100945. https://doi.org/10.1016/j.fpsl.2022.100945

Sahara, D., Triastono, J., Praptana, R. H., Romdon, A. S., Arianti, F. D., Widodo, S., ... & Nurwahyuni, E. (2023). Sorghum contribution to increased income and welfare of dryland farmer households in Wonogiri, Indonesia. Agriculture (Switzerland), 13(8), 1609. https://doi.org/10.3390/agriculture13081609

Samantha, C., Collado, M., Anthony, M., Yu, C., China, B., Labrador, C., ... & Escasinas, K. T. (2023). Utilizing cassava starch and powdered rice bran in making biodegradable straws. Get International Research Journal, 1(2), 97–105. https://doi.org/10.5281/zenodo.8031101

Shoukat, A., Hussain, M., & Shoukat, A. (2020). Effects of temperature on total dissolved solid in water. Retrieved from https://www.researchgate.net/publication/339510087_Effects_of_Temperature_on_Total_dissolved_Solid_in_water

Su, T. C., Du, W. K., Deng, B. Y., Zeng, J., Gao, H. Y., Zhou, H. X., ... & Zhang, J. Y. (2023). Effects of sodium carboxymethyl cellulose on storage stability and qualities of different frozen dough. Heliyon, 9(8), e18545. https://doi.org/10.1016/j.heliyon.2023.e18545

Susilawati, Surdianto, Y., Erythrina, E., Bhermana, A., Liana, T., Syafruddin, S., ... & Taufik, E. N. (2023). Strategic, economic, and potency assessment of sorghum (Sorghum bicolor L. Moench) development in the tidal swamplands of Central Kalimantan, Indonesia. Agronomy, 13(10), 2559. https://doi.org/10.3390/agronomy13102559

Tavares, K. M., de Campos, A., Mitsuyuki, M. C., Luchesi, B. R., & Marconcini, J. M. (2019). Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties. Carbohydrate Polymers, 223, 115055. https://doi.org/10.1016/j.carbpol.2019.115055

Xu, J., Blennow, A., Li, X., Chen, L., & Liu, X. (2020). Gelatinization dynamics of starch in dependence of its lamellar structure, crystalline polymorphs and amylose content. Carbohydrate Polymers, 229, 115481. https://doi.org/10.1016/j.carbpol.2019.115481

Yan, S., Li, Z., Wang, B., Li, T., Li, Z., Zhang, N., & Cui, B. (2023). Correlation analysis on physicochemical and structural properties of sorghum starch. Frontiers in Nutrition, 9, 1101868. https://doi.org/10.3389/fnut.2022.1101868

Zhang, J., Tao, L., Yang, S., Li, Y., Wu, Q., Song, S., & Yu, L. (2024). Water absorption behavior of starch: A review of its determination methods, influencing factors, directional modification, and food applications. Trends in Food Science & Technology, 144, 104321. https://doi.org/https://doi.org/10.1016/j.tifs.2023.104321

Refbacks

  • There are currently no refbacks.