Effects of Red Mud and KCl Fertilizer Combination on Nutrient Availability and Growth of Maize (Zea mays L.) in Peatland Soils

Sulakhudin Sulakhudin, Surachman Surachman

Abstract

Tropical peatlands in West Kalimantan are severely constrained by extreme acidity (pH < 4.5), limiting maize productivity to 15 to 35% of genetic potential. Traditional peat burning exacerbates environmental degradation through CO₂ emissions and particulate matter release. This study evaluated red mud-KCl fertilizer combinations on soil nutrient availability and maize growth. A randomized complete block design examined five treatments with five replications (n = 25). Four treatment levels (R1 to R4) were applied with red mud doses (0.75 to 3.0 kg plot-1) with KCl fertilizer (42.6 g) versus controls. Red mud, an alkaline bauxite waste (pH 10 to 12), maintained heavy metal concentrations below regulatory thresholds. Statistical analyses employed ANOVA (α = 0.05) and Duncan’s Multiple Range Test. Treatments significantly elevated soil pH from 4.41 (control) to 5.45 to 5.67, transforming strongly acidic to moderately acidic conditions. Exchangeable K increased from 2.02 to 4.40 cmol(+) kg-¹, representing a 118% improvement in K availability. Available P improved by 13.4%, enhancing nutrient uptake capacity. The optimal treatment (R4: 3.0 kg red mud + KCl) demonstrated superior maize performance with significantly greater plant height, stem diameter, and maize ear weight than controls. Treatment R4 achieved the most favorable soil chemical properties, including optimal cation exchange capacity and nutrient retention, creating ideal growing conditions that maximized maize genetic potential expression in previously unproductive acidic peatland soils. Results indicate substantial potential for sustainable peatland agriculture through red mud-KCl soil amendments. Future investigations should assess long-term environmental sustainability, socio-economic viability, and farmer adoption mechanisms for implementing this amelioration strategy in tropical peatland systems.

Keywords

amelioration; KCl fertilizer; maize cultivation; peatland; red mud

Full Text:

PDF

References

Abdul, F., Isworo, G., Mahaputra, R., & Pintowantoro, S. (2024). Possible strategies for red mud neutralization and dealkalization from the alumina production industry: A review for Indonesia. International Journal of Environmental Science and Technology, 22(6), 5159–5178. https://doi.org/10.1007/s13762-024-06122-5

Agus, C., Ilfana, Z. R., Azmi, F. F., Rachmanadi, D., Widiyatno, Wulandari, D., ..., & Lestari, T. (2019). The effect of tropical peat land-use changes on plant diversity and soil properties. International Journal of Environmental Science and Technology, 17(3), 1703–1712. https://doi.org/10.1007/s13762-019-02579-x

Anam, G. B., Reddy, M. S., & Ahn, Y.-H. (2019). Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Science of the Total Environment, 662, 462–469. https://doi.org/10.1016/j.scitotenv.2019.01.279

Archambo, M., & Kawatra, S. K. (2021). Red mud: Fundamentals and new avenues for utilization. Mineral Processing and Extractive Metallurgy Review, 42(7), 427–450. https://doi.org/10.1080/08827508.2020.1781109

Arsenault, J., Talbot, J., Moore, T. R., Knorr, K.-H., Teickner, H., & Lapierre, J.-F. (2024). Patterns and drivers of organic matter decomposition in peatland open-water pools. Biogeosciences, 21(15), 3491–3507. https://doi.org/10.5194/bg-21-3491-2024

Arunrat, N., Kongsurakan, P., Solomon, L. W., & Sereenonchai, S. (2024). Fire impacts on soil properties and implications for sustainability in rotational shifting cultivation: A review. Agriculture, 14(9), 1660. https://doi.org/10.3390/agriculture14091660

Behera, R. D. (2022). Soil and plant analysis (1st ed). New Delhi, India: New India Publishing Agency. Retrieved from https://books.google.co.id/books/about/Soil_And_Plant_Analysis.html?id=MieiEAAAQBAJ&redir_esc=y

Bernhard, B. J., & Below, F. E. (2020). Plant population and row spacing effects on corn: Plant growth, phenology, and grain yield. Agronomy Journal, 112(4), 2456–2465. https://doi.org/10.1002/agj2.20245

Cai, T., Pan, R., & Yang, M. (2023). Study on the effect of structural sodium dissolution on the physical properties of red mud treated by sulfuric acid. Minerals Engineering, 204, 108424. https://doi.org/10.1016/j.mineng.2023.108424

Chao, X., Zhang, T., Lyu, G., Liang, Z., & Chen, Y. (2022). Sustainable application of sodium removal from red mud: Cleaner production of silicon-potassium compound fertilizer. Journal of Cleaner Production, 352, 131601. https://doi.org/10.1016/j.jclepro.2022.131601

Charan, K., & Bhattacharyya, P. (2023). Vermicomposted red mud-An up-and-coming approach towards soil fertility and crop quality. Journal of Crop and Weed, 19(2), 36–51. https://doi.org/10.22271/09746315.2023.v19.i2.1701

Choo, L. N. L. K., Ahmed, O. H., Razak, N. A., & Sekot, S. (2022). Improving nitrogen availability and Ananas comosus L. Merr var. Moris productivity in a tropical peat soil using clinoptilolite zeolite. Agronomy, 12(11), 2750. https://doi.org/10.3390/agronomy12112750

Di Carlo, E., Chen, C. R., Haynes, R. J., Phillips, I. R., & Courtney, R. (2019). Soil quality and vegetation performance indicators for sustainable rehabilitation of bauxite residue disposal areas: A review. Soil Research, 57(5), 419. https://doi.org/10.1071/SR18348

Ding, S., Zhang, T., Fan, B., Fan, B., Yin, J., Chen, S., ..., & Chen, Q. (2023). Enhanced phosphorus fixation in red mud-amended acidic soil subjected to periodic flooding-drying and straw incorporation. Environmental Research, 229, 115960. https://doi.org/10.1016/j.envres.2023.115960

Elsonbaty, A., Abdelaziz, M., Abd El-Hady, A. S., & El-Sherpiny, M. A. (2025). Optimizing maize productivity as a strategic crop under alkaline soil conditions through organic fertilization and nanoparticle-based potassium sources. Egyptian Journal of Soil Science, 65(1), 91–107. https://doi.org/10.21608/ejss.2024.323304.1865

Eng, H. E., Teoh, C. S., Ismail, F., Razak, A. S. A., & Sulaiman, S. (2024). Elemental characteristics of particulate matter (PM₁₀ and PM₂.₅) from peat swamp area in Kuala Pahang. Construction, 4(2), 222–228. https://doi.org/10.15282/construction.v4i2.10670

Eviati, Sulaeman, Herawaty, L., Anggria, L., Usman, Tantika, H. E., Prihatini, R., & Wuningrum, P. (2023). Petunjuk teknis edisi 3: Analisis kimia tanah, tanaman, air, dan pupuk. Bogor, Indonesia: Soil and Fertilizer Instrument Standards Testing Center. Retrieved from https://tanahpupuk.bsip.pertanian.go.id/storage/assets/uploads/publikasi/Ho07w2htwf9OzGNVgMnfb1rsJrfxzYAjN687bbNC.pdf

Gao, S., Song, Y., Song, C., Wang, X., Gong, C., Ma, X., ..., & Du, Y. (2022). Long-term nitrogen addition alters peatland plant community structure and nutrient resorption efficiency. Science of The Total Environment, 844, 157176. https://doi.org/10.1016/j.scitotenv.2022.157176

Glaz, B., & Yeater, K. M. (2020). Applied statistics in agricultural, biological, and environmental sciences. New York, United States: John Wiley & Sons. Retrieved from https://scholar.google.co.id/scholar?cites=9686142478723001530&as_sdt=2005&sciodt=0,5&hl=id

Gondal, A. H., Hussain, I., Ijaz, A. B., Zafar, A., Ch, B. I., Zafar, H., ..., & Usama, M. (2021). Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. International Journal of Agriculture and Biological Sciences, 5(1), 71–81. http://dx.doi.org/10.5281/zenodo.4625364

Harmaji, A., Jafari, R., & Simard, G. (2024). Valorization of residue from aluminum industries: A review. Materials, 17(21), 5152. https://doi.org/10.3390/ma17215152

Hein, L., Spadaro, J. V., Ostro, B., Hammer, M., Sumarga, E., Salmayenti, R., ..., & Castañeda, J. P. (2022). The health impacts of Indonesian peatland fires. Environmental Health, 21(1), 62. https://doi.org/10.1186/s12940-022-00872-w

Hua, Y., Heal, K. V., & Friesl-Hanl, W. (2017). The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review. Journal of Hazardous Materials, 325, 17–30. https://doi.org/10.1016/j.jhazmat.2016.11.073

Ilahi, K., Debbarma, S., Mathew, G., & Inyang, H. I. (2024). Carbon capture and mineralisation using red mud: A systematic review of its principles and applications. Journal of Cleaner Production, 473, 143458. https://doi.org/10.1016/j.jclepro.2024.143458

Iqbal, S., Hussain, S., Qayyaum, M. A., & Ashraf, M. (2020). The response of maize physiology under salinity stress and its coping strategies. Plant stress physiology. IntechOpen. https://doi.org/10.5772/intechopen.92213

Jiang, X., Zhang, X., Cheng, G., & Liu, J. (2023). Assessing the potential of red mud and dehydrated mineral mud mixtures as soil matrix for revegetation. Journal of Environmental Management, 344, 118393. https://doi.org/10.1016/j.jenvman.2023.118393

Joshi, S., Nath, J., Singh, A. K., Pareek, A., & Joshi, R. (2022). Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum, 174(3), e13702. https://doi.org/10.1111/ppl.13702

Juhari, J., Iskandar, I., & Santosa, D. A. (2024). Utilization of red mud and biofertilizer for peat quality improvement and its effect on the growth and production of hybrid corn. Agrikultura, 35(3), 573–585. https://doi.org/10.24198/agrikultura.v35i3.59075

Kumar, H. (2022). Advanced techniques of analytical chemistry: Volume 1. Singapore: Bentham Science Publishers. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=nxJkEAAAQBAJ&oi=fnd&pg=PP1&dq=Advanced+Techniques+of+Analytical+Chemistry:+Volume+1&ots=QwS7NxWuYk&sig=3obGV-8n5Z0HnkfpEAqSefppWm8&redir_esc=y#v=onepage&q=Advanced%20Techniques%20of%20Analytical%20Chemistry%3A%20Volume%201&f=false

Kunarso, A., Bonner, M. T. L., Blanch, E. W., & Grover, S. (2022). Differences in tropical peat soil physical and chemical properties under different land uses: A systematic review and meta-analysis. Journal of Soil Science and Plant Nutrition, 22(4), 4063–4083. https://doi.org/10.1007/s42729-022-01008-2

Lan, X., Gao, J., Qu, X., & Guo, Z. (2022). An environmental-friendly method for recovery of soluble sodium and harmless utilization of red mud: Solidification, separation, and mechanism. Resources, Conservation and Recycling, 186, 106543. https://doi.org/10.1016/j.resconrec.2022.106543

Li, K., Lu, X., Jiang, C., Wang, D., Zhu, J., Xu, M., ..., & Cheng, X. (2025). Evaluation of leaching characteristics of heavy metal ions from red mud–graphite tailings. Toxics, 13(3), 211. https://doi.org/10.3390/toxics13030211

Lockwood, C. L., Mortimer, R. J., Stewart, D. I., Mayes, W. M., Peacock, C. L., Polya, D. A., ..., & Burke, I. T. (2014). Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions. Applied Geochemistry, 51, 268–277. https://doi.org/10.1016/j.apgeochem.2014.10.009

Luo, L., Ye, H., Zhang, D., Gu, J.-D., & Deng, O. (2021). The dynamics of phosphorus fractions and the factors driving phosphorus cycle in Zoige Plateau peatland soil. Chemosphere, 278, 130501. https://doi.org/10.1016/j.chemosphere.2021.130501

Lwin, C. S., Seo, B.-H., Kim, H.-U., Owens, G., & Kim, K.-R. (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Science and Plant Nutrition, 64(2), 156–167. https://doi.org/10.1080/00380768.2018.1440938

Maswar, Firmansyah, A., Haryati, U., & Irawan. (2021). The effect of ameliorant on peat soil properties and shallots productivity in peatlands. IOP Conference Series: Earth and Environmental Science, 648(1), 012057. https://doi.org/10.1088/1755-1315/648/1/012057

Matcham, E. G., Ruark, M. D., Stoltenberg, D. E., & Conley, S. P. (2023). Comparison of Bray‐1 and Mehlich‐3 extraction of P and K in Wisconsin silt loam soils. Soil Science Society of America Journal, 87(4), 999–1002. https://doi.org/10.1002/saj2.20557

McCarter, C. P., Weber, T. K., & Price, J. S. (2018). Competitive transport processes of chloride, sodium, potassium, and ammonium in fen peat. Journal of Contaminant Hydrology, 217, 17–31. https://doi.org/10.1016/j.jconhyd.2018.08.004

Mishra, S., Page, S. E., Cobb, A. R., Lee, J. S. H., Jovani‐Sancho, A. J., Sjögersten, S., ..., & Wardle, D. A. (2021). Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. Journal of Applied Ecology, 58(7), 1370–1387. https://doi.org/10.1111/1365-2664.13905

Mostofa, M. G., Rahman, M. M., Ghosh, T. K., Kabir, A. H., Abdelrahman, M., Khan, M. A. R., ..., & Tran, L. S. P. (2022). Potassium in plant physiological adaptation to abiotic stresses. Plant Physiology and Biochemistry, 186, 279–289. https://doi.org/10.1016/j.plaphy.2022.07.011

Nurzakiah, S., Sutandi, A., Djajakirana, G., Sudadi, U., & Sabiham, S. (2021). The contribution of organic acid on heterotrophic CO2 flux from tropical peat: A trenching study. Journal of Degraded and Mining Lands Management, 9(1), 3035. https://doi.org/10.15243/jdmlm.2021.091.3035

Nusantara, R. W., Sudarmadji, S., Djohan, T. S., & Haryono, E. (2020). Impact of land-use change on soil carbon dynamics in tropical peatland, West Kalimantan-Indonesia. Indonesian Journal of Geography, 52(1), 61–68. https://doi.org/10.22146/ijg.48451

Purwanto, E. A. (2018). Coping with policy paradoxes and actor interests in peatland and oil palm management in Indonesia. Bisnis & Birokrasi Journal, 25(3), 2. Retrieved from https://scholarhub.ui.ac.id/jbb/vol25/iss3/2/

Reddy, P. S., Reddy, N. G., Serjun, V. Z., Mohanty, B., Das, S. K., Reddy, K. R., & Rao, B. H. (2020). Properties and assessment of applications of red mud (bauxite residue): Current status and research needs. Waste and Biomass Valorization, 12(3), 1185–1217. https://doi.org/10.1007/s12649-020-01089-z

Reeza, A. A., Baharuddin, M. A. F., Ahmed, O. H., & Masuri, M. A. (2023). Nutrient uptake in different maize varieties (Zea mays L.) planted in tropical peat materials. Pertanika Journal of Tropical Agricultural Science, 46(4), 1221–1232. https://doi.org/10.47836/pjtas.46.4.09

Rehman, A. P. D. H. U., & Ikram, M. (2020). Allometric effect of K2O on morpho-physiological stages of maize crop. Cereal Grain; Production and Improvement, pp. 21–46. Retrieved from https://iksadyayinevi.com/wp-content/uploads/2020/12/CEREAL-GRAIN-PRODUCTIONS-AND-IMPROVEMENT.pdf#page=28

Rodzkin, A., Charnenok, E., & Krstic, B. (2021). The use of degraded peatlands for biomass production. Zbornik Matice Srpske Za Prirodne Nauke, 140, 103–112. https://doi.org/10.2298/ZMSPN2140103R

Samal, S. (2021). Utilization of red mud as a source for metal ions—A review. Materials, 14(9), 2211. https://doi.org/10.3390/ma14092211

Santini, T. C., Kerr, J. L., & Warren, L. A. (2015). Microbially-driven strategies for bioremediation of bauxite residue. Journal of Hazardous Materials, 293, 131–157. https://doi.org/10.1016/j.jhazmat.2015.03.024

Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants, 10(2), 419. https://doi.org/10.3390/plants10020419

Sasmito, S. D., Taillardat, P., Adinugroho, W. C., Krisnawati, H., Novita, N., Fatoyinbo, L., ..., & Lupascu, M. (2025). Half of land use carbon emissions in Southeast Asia can be mitigated through peat swamp forest and mangrove conservation and restoration. Nature Communications, 16(1), 740. https://doi.org/10.1038/s41467-025-55892-0

Sharma, U. C., Datta, M., & Sharma, V. (2025). Chemistry, microbiology, and behaviour of acid soils. Soil Acidity: Management Options for Higher Crop Productivity, pp. 121–322. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76357-1_3

Sinaga, P. H., Jahari, M., Usman, Istina, I. N., & Sutrisna, N. (2020). Minimum fertilizer for maize cultivation in suboptimal agroecosystem. IOP Conference Series: Earth and Environmental Science, 484(1), 012119. https://doi.org/10.1088/1755-1315/484/1/012119

Singh, Y. V. (2024). Standard methods for soil, water and plant analysis (1st ed.). London: CRC Press. https://doi.org/10.1201/9781003534303

Strack, M., Davidson, S. J., Hirano, T., & Dunn, C. (2022). The potential of peatlands as nature-based climate solutions. Current Climate Change Reports, 8(3), 71–82. https://doi.org/10.1007/s40641-022-00183-9

Sulakhudin, Herawatiningsih, R., Krisnohadi, A., Abdillah, A. M., Santi, & Mudim. (2024). Impact of red mud on soil properties and revegetation species growth in bauxite mining land reclamation. Journal of Degraded and Mining Lands Management, 12(1), 6509–6518. https://doi.org/10.15243/jdmlm.2024.121.6509

Surachman, S., Palupi, T., Purwaningsih, P., & Gafur, S. (2024). The effect of biostimulants and red mud on the growth and yield of shallots in post-unlicensed gold mining soil. Open Agriculture, 9(1), 20220325. https://doi.org/10.1515/opag-2022-0325

Syahza, A., Suswondo, Bakce, D., Nasrul, B., Wawan, & Irianti, M. (2020). Peatland policy and management strategy to support sustainable development in Indonesia. Journal of Physics: Conference Series, 1655(1), 012151. https://doi.org/10.1088/1742-6596/1655/1/012151

Taneez, M., & Hurel, C. (2019). A review on the potential uses of red mud as amendment for pollution control in environmental media. Environmental Science and Pollution Research, 26(22), 22106–22125. https://doi.org/10.1007/s11356-019-05576-2

Tanvar, H., & Mishra, B. (2025). Environmental management by recycling of bauxite residue. Journal of Advanced Manufacturing and Processing, e70010. https://doi.org/10.1002/amp2.70010

Tong, Z., Hua, P., Zeng, Q., Li, X., Zhang, S., Hu, Z., & Jia, H. (2025). Properties of red mud treated synergistically with citric acid and calcium nitrate and their effects on plant growth after soil conversion. Journal of Sustainable Metallurgy, 11(2), 1658–1670. https://doi.org/10.1007/s40831-025-01073-8

Uda, S. K., Hein, L., & Atmoko, D. (2019). Assessing the health impacts of peatland fires: A case study for Central Kalimantan, Indonesia. Environmental Science and Pollution Research, 26(30), 31315–31327. https://doi.org/10.1007/s11356-019-06264-x

Vuković, J., Perušić, M., Stopić, S., Kostić, D., Smiljanić, S., Filipović, R., & Damjanović, V. (2024). A review of the red mud utilization possibilities. Ovidius University Annals of Chemistry, 35(2), 165–173. https://doi.org/10.2478/auoc-2024-0021

Wang, M., & Liu, X. (2021). Applications of red mud as an environmental remediation material: A review. Journal of Hazardous Materials, 408, 124420. https://doi.org/10.1016/j.jhazmat.2020.124420

Widiastuti, D. P., Hatta, M., Aziz, H., Permana, D., Santari, P. T., Rohaeni, E. S., ..., & Rakhmani, S. I. W. (2024). Peatlands management for sustainable use on the integration of maize and cattle in a circular agriculture system in West Kalimantan, Indonesia. Heliyon, 10(10), e31259. https://doi.org/10.1016/j.heliyon.2024.e31259

Xu, W., Jin, Y., & Zeng, G. (2024). Introduction of heavy metals contamination in the water and soil: A review on source, toxicity and remediation methods. Green Chemistry Letters and Reviews, 17(1), 2404235. https://doi.org/10.1080/17518253.2024.2404235

Xue, H., Lv, G., & Zhang, T. (2025). Progress of solid waste red mud in the field of ecology and environment. Water, Air, & Soil Pollution, 236(3), 176. https://doi.org/10.1007/s11270-025-07815-4

Xue, J., Gao, S., Fan, Y., Li, L., Ming, B., Wang, K., Xie, R., Hou, P., & Li, S. (2020). Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. European Journal of Agronomy, 117, 126073. https://doi.org/10.1016/j.eja.2020.126073

Zhang, S., Yang, X., Hsu, L.-C., Liu, Y.-T., Wang, S.-L., White, J. R., ..., & Rinklebe, J. (2021). Soil acidification enhances the mobilization of phosphorus under anoxic conditions in an agricultural soil: Investigating the potential for loss of phosphorus to water and the associated environmental risk. Science of the Total Environment, 793, 148531. https://doi.org/10.1016/j.scitotenv.2021.148531

Zhou, J.-M. (2024). The relationship between soil pH and geochemical components. Environmental Earth Sciences, 83(13), 402. https://doi.org/10.1007/s12665-024-11711-1

Zhou, Y., Cui, Y., Yang, J., Chen, L., Qi, J., Zhang, L., ..., & Li, B. (2024). Roles of red mud in remediation of contaminated soil in mining areas: Mechanisms, advances and perspectives. Journal of Environmental Management, 356, 120608. https://doi.org/10.1016/j.jenvman.2024.120608

Refbacks

  • There are currently no refbacks.