Effects of Red Mud and KCl Fertilizer Combination on Nutrient Availability and Growth of Maize (Zea mays L.) in Peatland Soils
Abstract
Keywords
Full Text:
PDFReferences
Abdul, F., Isworo, G., Mahaputra, R., & Pintowantoro, S. (2024). Possible strategies for red mud neutralization and dealkalization from the alumina production industry: A review for Indonesia. International Journal of Environmental Science and Technology, 22(6), 5159–5178. https://doi.org/10.1007/s13762-024-06122-5
Agus, C., Ilfana, Z. R., Azmi, F. F., Rachmanadi, D., Widiyatno, Wulandari, D., ..., & Lestari, T. (2019). The effect of tropical peat land-use changes on plant diversity and soil properties. International Journal of Environmental Science and Technology, 17(3), 1703–1712. https://doi.org/10.1007/s13762-019-02579-x
Anam, G. B., Reddy, M. S., & Ahn, Y.-H. (2019). Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Science of the Total Environment, 662, 462–469. https://doi.org/10.1016/j.scitotenv.2019.01.279
Archambo, M., & Kawatra, S. K. (2021). Red mud: Fundamentals and new avenues for utilization. Mineral Processing and Extractive Metallurgy Review, 42(7), 427–450. https://doi.org/10.1080/08827508.2020.1781109
Arsenault, J., Talbot, J., Moore, T. R., Knorr, K.-H., Teickner, H., & Lapierre, J.-F. (2024). Patterns and drivers of organic matter decomposition in peatland open-water pools. Biogeosciences, 21(15), 3491–3507. https://doi.org/10.5194/bg-21-3491-2024
Arunrat, N., Kongsurakan, P., Solomon, L. W., & Sereenonchai, S. (2024). Fire impacts on soil properties and implications for sustainability in rotational shifting cultivation: A review. Agriculture, 14(9), 1660. https://doi.org/10.3390/agriculture14091660
Behera, R. D. (2022). Soil and plant analysis (1st ed). New Delhi, India: New India Publishing Agency. Retrieved from https://books.google.co.id/books/about/Soil_And_Plant_Analysis.html?id=MieiEAAAQBAJ&redir_esc=y
Bernhard, B. J., & Below, F. E. (2020). Plant population and row spacing effects on corn: Plant growth, phenology, and grain yield. Agronomy Journal, 112(4), 2456–2465. https://doi.org/10.1002/agj2.20245
Cai, T., Pan, R., & Yang, M. (2023). Study on the effect of structural sodium dissolution on the physical properties of red mud treated by sulfuric acid. Minerals Engineering, 204, 108424. https://doi.org/10.1016/j.mineng.2023.108424
Chao, X., Zhang, T., Lyu, G., Liang, Z., & Chen, Y. (2022). Sustainable application of sodium removal from red mud: Cleaner production of silicon-potassium compound fertilizer. Journal of Cleaner Production, 352, 131601. https://doi.org/10.1016/j.jclepro.2022.131601
Charan, K., & Bhattacharyya, P. (2023). Vermicomposted red mud-An up-and-coming approach towards soil fertility and crop quality. Journal of Crop and Weed, 19(2), 36–51. https://doi.org/10.22271/09746315.2023.v19.i2.1701
Choo, L. N. L. K., Ahmed, O. H., Razak, N. A., & Sekot, S. (2022). Improving nitrogen availability and Ananas comosus L. Merr var. Moris productivity in a tropical peat soil using clinoptilolite zeolite. Agronomy, 12(11), 2750. https://doi.org/10.3390/agronomy12112750
Di Carlo, E., Chen, C. R., Haynes, R. J., Phillips, I. R., & Courtney, R. (2019). Soil quality and vegetation performance indicators for sustainable rehabilitation of bauxite residue disposal areas: A review. Soil Research, 57(5), 419. https://doi.org/10.1071/SR18348
Ding, S., Zhang, T., Fan, B., Fan, B., Yin, J., Chen, S., ..., & Chen, Q. (2023). Enhanced phosphorus fixation in red mud-amended acidic soil subjected to periodic flooding-drying and straw incorporation. Environmental Research, 229, 115960. https://doi.org/10.1016/j.envres.2023.115960
Elsonbaty, A., Abdelaziz, M., Abd El-Hady, A. S., & El-Sherpiny, M. A. (2025). Optimizing maize productivity as a strategic crop under alkaline soil conditions through organic fertilization and nanoparticle-based potassium sources. Egyptian Journal of Soil Science, 65(1), 91–107. https://doi.org/10.21608/ejss.2024.323304.1865
Eng, H. E., Teoh, C. S., Ismail, F., Razak, A. S. A., & Sulaiman, S. (2024). Elemental characteristics of particulate matter (PM₁₀ and PM₂.₅) from peat swamp area in Kuala Pahang. Construction, 4(2), 222–228. https://doi.org/10.15282/construction.v4i2.10670
Eviati, Sulaeman, Herawaty, L., Anggria, L., Usman, Tantika, H. E., Prihatini, R., & Wuningrum, P. (2023). Petunjuk teknis edisi 3: Analisis kimia tanah, tanaman, air, dan pupuk. Bogor, Indonesia: Soil and Fertilizer Instrument Standards Testing Center. Retrieved from https://tanahpupuk.bsip.pertanian.go.id/storage/assets/uploads/publikasi/Ho07w2htwf9OzGNVgMnfb1rsJrfxzYAjN687bbNC.pdf
Gao, S., Song, Y., Song, C., Wang, X., Gong, C., Ma, X., ..., & Du, Y. (2022). Long-term nitrogen addition alters peatland plant community structure and nutrient resorption efficiency. Science of The Total Environment, 844, 157176. https://doi.org/10.1016/j.scitotenv.2022.157176
Glaz, B., & Yeater, K. M. (2020). Applied statistics in agricultural, biological, and environmental sciences. New York, United States: John Wiley & Sons. Retrieved from https://scholar.google.co.id/scholar?cites=9686142478723001530&as_sdt=2005&sciodt=0,5&hl=id
Gondal, A. H., Hussain, I., Ijaz, A. B., Zafar, A., Ch, B. I., Zafar, H., ..., & Usama, M. (2021). Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. International Journal of Agriculture and Biological Sciences, 5(1), 71–81. http://dx.doi.org/10.5281/zenodo.4625364
Harmaji, A., Jafari, R., & Simard, G. (2024). Valorization of residue from aluminum industries: A review. Materials, 17(21), 5152. https://doi.org/10.3390/ma17215152
Hein, L., Spadaro, J. V., Ostro, B., Hammer, M., Sumarga, E., Salmayenti, R., ..., & Castañeda, J. P. (2022). The health impacts of Indonesian peatland fires. Environmental Health, 21(1), 62. https://doi.org/10.1186/s12940-022-00872-w
Hua, Y., Heal, K. V., & Friesl-Hanl, W. (2017). The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review. Journal of Hazardous Materials, 325, 17–30. https://doi.org/10.1016/j.jhazmat.2016.11.073
Ilahi, K., Debbarma, S., Mathew, G., & Inyang, H. I. (2024). Carbon capture and mineralisation using red mud: A systematic review of its principles and applications. Journal of Cleaner Production, 473, 143458. https://doi.org/10.1016/j.jclepro.2024.143458
Iqbal, S., Hussain, S., Qayyaum, M. A., & Ashraf, M. (2020). The response of maize physiology under salinity stress and its coping strategies. Plant stress physiology. IntechOpen. https://doi.org/10.5772/intechopen.92213
Jiang, X., Zhang, X., Cheng, G., & Liu, J. (2023). Assessing the potential of red mud and dehydrated mineral mud mixtures as soil matrix for revegetation. Journal of Environmental Management, 344, 118393. https://doi.org/10.1016/j.jenvman.2023.118393
Joshi, S., Nath, J., Singh, A. K., Pareek, A., & Joshi, R. (2022). Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum, 174(3), e13702. https://doi.org/10.1111/ppl.13702
Juhari, J., Iskandar, I., & Santosa, D. A. (2024). Utilization of red mud and biofertilizer for peat quality improvement and its effect on the growth and production of hybrid corn. Agrikultura, 35(3), 573–585. https://doi.org/10.24198/agrikultura.v35i3.59075
Kumar, H. (2022). Advanced techniques of analytical chemistry: Volume 1. Singapore: Bentham Science Publishers. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=nxJkEAAAQBAJ&oi=fnd&pg=PP1&dq=Advanced+Techniques+of+Analytical+Chemistry:+Volume+1&ots=QwS7NxWuYk&sig=3obGV-8n5Z0HnkfpEAqSefppWm8&redir_esc=y#v=onepage&q=Advanced%20Techniques%20of%20Analytical%20Chemistry%3A%20Volume%201&f=false
Kunarso, A., Bonner, M. T. L., Blanch, E. W., & Grover, S. (2022). Differences in tropical peat soil physical and chemical properties under different land uses: A systematic review and meta-analysis. Journal of Soil Science and Plant Nutrition, 22(4), 4063–4083. https://doi.org/10.1007/s42729-022-01008-2
Lan, X., Gao, J., Qu, X., & Guo, Z. (2022). An environmental-friendly method for recovery of soluble sodium and harmless utilization of red mud: Solidification, separation, and mechanism. Resources, Conservation and Recycling, 186, 106543. https://doi.org/10.1016/j.resconrec.2022.106543
Li, K., Lu, X., Jiang, C., Wang, D., Zhu, J., Xu, M., ..., & Cheng, X. (2025). Evaluation of leaching characteristics of heavy metal ions from red mud–graphite tailings. Toxics, 13(3), 211. https://doi.org/10.3390/toxics13030211
Lockwood, C. L., Mortimer, R. J., Stewart, D. I., Mayes, W. M., Peacock, C. L., Polya, D. A., ..., & Burke, I. T. (2014). Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions. Applied Geochemistry, 51, 268–277. https://doi.org/10.1016/j.apgeochem.2014.10.009
Luo, L., Ye, H., Zhang, D., Gu, J.-D., & Deng, O. (2021). The dynamics of phosphorus fractions and the factors driving phosphorus cycle in Zoige Plateau peatland soil. Chemosphere, 278, 130501. https://doi.org/10.1016/j.chemosphere.2021.130501
Lwin, C. S., Seo, B.-H., Kim, H.-U., Owens, G., & Kim, K.-R. (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Science and Plant Nutrition, 64(2), 156–167. https://doi.org/10.1080/00380768.2018.1440938
Maswar, Firmansyah, A., Haryati, U., & Irawan. (2021). The effect of ameliorant on peat soil properties and shallots productivity in peatlands. IOP Conference Series: Earth and Environmental Science, 648(1), 012057. https://doi.org/10.1088/1755-1315/648/1/012057
Matcham, E. G., Ruark, M. D., Stoltenberg, D. E., & Conley, S. P. (2023). Comparison of Bray‐1 and Mehlich‐3 extraction of P and K in Wisconsin silt loam soils. Soil Science Society of America Journal, 87(4), 999–1002. https://doi.org/10.1002/saj2.20557
McCarter, C. P., Weber, T. K., & Price, J. S. (2018). Competitive transport processes of chloride, sodium, potassium, and ammonium in fen peat. Journal of Contaminant Hydrology, 217, 17–31. https://doi.org/10.1016/j.jconhyd.2018.08.004
Mishra, S., Page, S. E., Cobb, A. R., Lee, J. S. H., Jovani‐Sancho, A. J., Sjögersten, S., ..., & Wardle, D. A. (2021). Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. Journal of Applied Ecology, 58(7), 1370–1387. https://doi.org/10.1111/1365-2664.13905
Mostofa, M. G., Rahman, M. M., Ghosh, T. K., Kabir, A. H., Abdelrahman, M., Khan, M. A. R., ..., & Tran, L. S. P. (2022). Potassium in plant physiological adaptation to abiotic stresses. Plant Physiology and Biochemistry, 186, 279–289. https://doi.org/10.1016/j.plaphy.2022.07.011
Nurzakiah, S., Sutandi, A., Djajakirana, G., Sudadi, U., & Sabiham, S. (2021). The contribution of organic acid on heterotrophic CO2 flux from tropical peat: A trenching study. Journal of Degraded and Mining Lands Management, 9(1), 3035. https://doi.org/10.15243/jdmlm.2021.091.3035
Nusantara, R. W., Sudarmadji, S., Djohan, T. S., & Haryono, E. (2020). Impact of land-use change on soil carbon dynamics in tropical peatland, West Kalimantan-Indonesia. Indonesian Journal of Geography, 52(1), 61–68. https://doi.org/10.22146/ijg.48451
Purwanto, E. A. (2018). Coping with policy paradoxes and actor interests in peatland and oil palm management in Indonesia. Bisnis & Birokrasi Journal, 25(3), 2. Retrieved from https://scholarhub.ui.ac.id/jbb/vol25/iss3/2/
Reddy, P. S., Reddy, N. G., Serjun, V. Z., Mohanty, B., Das, S. K., Reddy, K. R., & Rao, B. H. (2020). Properties and assessment of applications of red mud (bauxite residue): Current status and research needs. Waste and Biomass Valorization, 12(3), 1185–1217. https://doi.org/10.1007/s12649-020-01089-z
Reeza, A. A., Baharuddin, M. A. F., Ahmed, O. H., & Masuri, M. A. (2023). Nutrient uptake in different maize varieties (Zea mays L.) planted in tropical peat materials. Pertanika Journal of Tropical Agricultural Science, 46(4), 1221–1232. https://doi.org/10.47836/pjtas.46.4.09
Rehman, A. P. D. H. U., & Ikram, M. (2020). Allometric effect of K2O on morpho-physiological stages of maize crop. Cereal Grain; Production and Improvement, pp. 21–46. Retrieved from https://iksadyayinevi.com/wp-content/uploads/2020/12/CEREAL-GRAIN-PRODUCTIONS-AND-IMPROVEMENT.pdf#page=28
Rodzkin, A., Charnenok, E., & Krstic, B. (2021). The use of degraded peatlands for biomass production. Zbornik Matice Srpske Za Prirodne Nauke, 140, 103–112. https://doi.org/10.2298/ZMSPN2140103R
Samal, S. (2021). Utilization of red mud as a source for metal ions—A review. Materials, 14(9), 2211. https://doi.org/10.3390/ma14092211
Santini, T. C., Kerr, J. L., & Warren, L. A. (2015). Microbially-driven strategies for bioremediation of bauxite residue. Journal of Hazardous Materials, 293, 131–157. https://doi.org/10.1016/j.jhazmat.2015.03.024
Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants, 10(2), 419. https://doi.org/10.3390/plants10020419
Sasmito, S. D., Taillardat, P., Adinugroho, W. C., Krisnawati, H., Novita, N., Fatoyinbo, L., ..., & Lupascu, M. (2025). Half of land use carbon emissions in Southeast Asia can be mitigated through peat swamp forest and mangrove conservation and restoration. Nature Communications, 16(1), 740. https://doi.org/10.1038/s41467-025-55892-0
Sharma, U. C., Datta, M., & Sharma, V. (2025). Chemistry, microbiology, and behaviour of acid soils. Soil Acidity: Management Options for Higher Crop Productivity, pp. 121–322. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76357-1_3
Sinaga, P. H., Jahari, M., Usman, Istina, I. N., & Sutrisna, N. (2020). Minimum fertilizer for maize cultivation in suboptimal agroecosystem. IOP Conference Series: Earth and Environmental Science, 484(1), 012119. https://doi.org/10.1088/1755-1315/484/1/012119
Singh, Y. V. (2024). Standard methods for soil, water and plant analysis (1st ed.). London: CRC Press. https://doi.org/10.1201/9781003534303
Strack, M., Davidson, S. J., Hirano, T., & Dunn, C. (2022). The potential of peatlands as nature-based climate solutions. Current Climate Change Reports, 8(3), 71–82. https://doi.org/10.1007/s40641-022-00183-9
Sulakhudin, Herawatiningsih, R., Krisnohadi, A., Abdillah, A. M., Santi, & Mudim. (2024). Impact of red mud on soil properties and revegetation species growth in bauxite mining land reclamation. Journal of Degraded and Mining Lands Management, 12(1), 6509–6518. https://doi.org/10.15243/jdmlm.2024.121.6509
Surachman, S., Palupi, T., Purwaningsih, P., & Gafur, S. (2024). The effect of biostimulants and red mud on the growth and yield of shallots in post-unlicensed gold mining soil. Open Agriculture, 9(1), 20220325. https://doi.org/10.1515/opag-2022-0325
Syahza, A., Suswondo, Bakce, D., Nasrul, B., Wawan, & Irianti, M. (2020). Peatland policy and management strategy to support sustainable development in Indonesia. Journal of Physics: Conference Series, 1655(1), 012151. https://doi.org/10.1088/1742-6596/1655/1/012151
Taneez, M., & Hurel, C. (2019). A review on the potential uses of red mud as amendment for pollution control in environmental media. Environmental Science and Pollution Research, 26(22), 22106–22125. https://doi.org/10.1007/s11356-019-05576-2
Tanvar, H., & Mishra, B. (2025). Environmental management by recycling of bauxite residue. Journal of Advanced Manufacturing and Processing, e70010. https://doi.org/10.1002/amp2.70010
Tong, Z., Hua, P., Zeng, Q., Li, X., Zhang, S., Hu, Z., & Jia, H. (2025). Properties of red mud treated synergistically with citric acid and calcium nitrate and their effects on plant growth after soil conversion. Journal of Sustainable Metallurgy, 11(2), 1658–1670. https://doi.org/10.1007/s40831-025-01073-8
Uda, S. K., Hein, L., & Atmoko, D. (2019). Assessing the health impacts of peatland fires: A case study for Central Kalimantan, Indonesia. Environmental Science and Pollution Research, 26(30), 31315–31327. https://doi.org/10.1007/s11356-019-06264-x
Vuković, J., Perušić, M., Stopić, S., Kostić, D., Smiljanić, S., Filipović, R., & Damjanović, V. (2024). A review of the red mud utilization possibilities. Ovidius University Annals of Chemistry, 35(2), 165–173. https://doi.org/10.2478/auoc-2024-0021
Wang, M., & Liu, X. (2021). Applications of red mud as an environmental remediation material: A review. Journal of Hazardous Materials, 408, 124420. https://doi.org/10.1016/j.jhazmat.2020.124420
Widiastuti, D. P., Hatta, M., Aziz, H., Permana, D., Santari, P. T., Rohaeni, E. S., ..., & Rakhmani, S. I. W. (2024). Peatlands management for sustainable use on the integration of maize and cattle in a circular agriculture system in West Kalimantan, Indonesia. Heliyon, 10(10), e31259. https://doi.org/10.1016/j.heliyon.2024.e31259
Xu, W., Jin, Y., & Zeng, G. (2024). Introduction of heavy metals contamination in the water and soil: A review on source, toxicity and remediation methods. Green Chemistry Letters and Reviews, 17(1), 2404235. https://doi.org/10.1080/17518253.2024.2404235
Xue, H., Lv, G., & Zhang, T. (2025). Progress of solid waste red mud in the field of ecology and environment. Water, Air, & Soil Pollution, 236(3), 176. https://doi.org/10.1007/s11270-025-07815-4
Xue, J., Gao, S., Fan, Y., Li, L., Ming, B., Wang, K., Xie, R., Hou, P., & Li, S. (2020). Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. European Journal of Agronomy, 117, 126073. https://doi.org/10.1016/j.eja.2020.126073
Zhang, S., Yang, X., Hsu, L.-C., Liu, Y.-T., Wang, S.-L., White, J. R., ..., & Rinklebe, J. (2021). Soil acidification enhances the mobilization of phosphorus under anoxic conditions in an agricultural soil: Investigating the potential for loss of phosphorus to water and the associated environmental risk. Science of the Total Environment, 793, 148531. https://doi.org/10.1016/j.scitotenv.2021.148531
Zhou, J.-M. (2024). The relationship between soil pH and geochemical components. Environmental Earth Sciences, 83(13), 402. https://doi.org/10.1007/s12665-024-11711-1
Zhou, Y., Cui, Y., Yang, J., Chen, L., Qi, J., Zhang, L., ..., & Li, B. (2024). Roles of red mud in remediation of contaminated soil in mining areas: Mechanisms, advances and perspectives. Journal of Environmental Management, 356, 120608. https://doi.org/10.1016/j.jenvman.2024.120608
Refbacks
- There are currently no refbacks.