The Effect of Land Clearing Techniques on the Chemical and Biological Character of Soil in Sugarcane Fields

Anna Kusumawati, Lintang Panjali Siwi Pambayun

Abstract

Land clearing after harvest in sugarcane cultivation is often done by burning. However, burning influences the ecosystem, such as the chemical and biological characteristics of soil. This research aims to analyze the impact of different methods of clearing sugarcane fields on the chemical and biological conditions of the soil. This research used a non-factorial, completely randomized design (CRD) with two treatments: land clearing with burning and without burning. Each treatment was carried out on an area of 50 m2 with two blocks as repetitions. For chemical and biological analysis, soil samples were taken from pitfall traps and soil monoliths (1 m x 1 m x 30 cm). Two treatments showed significant differences in the total N and available P, and burning reduced 21% the number of organisms significantly. There were significant differences between the two treatments regarding the macrofauna diversity index, species evenness value, and dominance index. Post-harvest burning significantly reduces total N and available P and negatively impacts biological indicators such as organism numbers, diversity, evenness, and dominance index. This decrease in organic matter causes a reduction in the populations of organisms, thus disrupting soil health. Therefore, this study recommends that sugarcane residues be returned to the land as a source of organic matter to maintain soil health, biodiversity, and optimal productivity.

Keywords

organic matter dynamics; post-harvest burning; soil biological indicators; soil microbial activity; sugarcane field

Full Text:

PDF

References

Afifatur, M. (2021). Keanekaragaman hewan tanah sebagai bioindikator kualitas tanah di lahan tebu pupuk organik dan lahan tebu pupuk non organik Desa Wonokusumo Kecamatan Tapen Kabupaten Bondowoso. Gunung Djati Conference Series, 6, 1–10. Retrieved from https://conferences.uinsgd.ac.id/index.php/gdcs/article/view/483

Andrews, S. S., Karlen, D. L., & Cambardella, C. A. (2004). The soil management assessment framework. Soil Science Society of America Journal, 68(6), 1945–1962. https://doi.org/10.2136/sssaj2004.1945

Aryanti, E., Adiya, S. D., & Hera, N. (2023). Impact of forest fires on micronutrients on peat soils in Rimbo Panjang Kampar Regency. Jurnal Biologi Tropis, 23(1), 70–77. https://doi.org/http://dx.doi.org/10.29303/jbt.v23i1.4417

Augusto, L., Achat, D. L., Jonard, M., Vidal, D., & Ringeval, B. (2017). Soil parent material - A major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biology, 23(9), 3808–3824. https://doi.org/10.1111/ijlh.12426

Bigott, A. F., Hoy, J. W., & Fultz, L. M. (2019). Soil properties, microbial communities, and sugarcane yield in paired fields with short-or long-term sugarcane cultivation histories. Applied Soil Ecology, 142, 166–176. https://doi.org/10.1016/j.apsoil.2019.04.027

Chekaev, N. P., Blinokhvatova, Y. V., Nushtaeva, A. V., & Kuznetsov, A. Y. (2022). Achieving the balance of macronutrients with the no-till technology in the cultivation of agricultural crops with microbiological fertilizers. IOP Conference Series: Earth and Environmental Science, 953(1), 012022. https://doi.org/10.1088/1755-1315/953/1/012022

Chen, Y. (2008). Global potential distribution of an invasive species, the yellow crazy ant (Anoplolepis gracilipes) under climate change. Integrative Zoology, 3, 166–175. https://doi.org/10.1111/j.1749-4877.2008.00095.x

Cherubin, M. R., Oliveira, D. M. D. S., Feigl, B. J., Pimentel, L. G., Lisboa, I. P., Gmach, M. R., ..., & Cerri, C. C. (2018). Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola, 75(3), 255–272. https://doi.org/10.1590/1678-992x-2016-0459

Dewi, V. A. K., Putra, R. P., & Febry, W. (2022). Kajian potensi vinase sebagai bahan fertigasi di perkebunan tebu (Saccharum officinarum L.). Sang Pencerah: Jurnal Ilmiah Universitas Muhammadiyah Buton, 8(1), 187–201. https://doi.org/10.35326/pencerah.v8i1.1961

dos Santos, O. A. Q., Tavares, O. C. H., García, A. C., Rossi, C. Q., de Moura, O. V. T., Pereira, W., ..., & Pereira, M. G. (2020). Fire lead to disturbance on organic carbon under sugarcane cultivation but is recovered by amendment with vinasse. Science of the Total Environment, 739, 140063. https://doi.org/10.1016/j.scitotenv.2020.140063

Eleftheriadis, A., Lafuente, F., & Turrión, M. (2018). Effect of land use, time since deforestation and management on organic C and N in soil textural fractions. Soil & Tillage Research, 183, 1–7. https://doi.org/10.1016/j.still.2018.05.012

Frac, M., Hannula, S. E., Belka, M., & Jȩdryczka, M. (2018). Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 9, 316246. https://doi.org/10.3389/fmicb.2018.00707

Handayani, W., & Winara, A. (2020). Diversity of soil macrofauna on several land use on peatlands. Jurnal Agroforestri Indonesia, 3(2), 77–88. https://doi.org/10.20886/jai.2020.3.2.77-88

Haneda, N. F., & Yuniar, N. (2020). Peranan semut di ekosistem transformasi hutan hujan tropis dataran rendah. Jurnal Ilmu Kehutanan, 14(1), 16–27. https://doi.org/10.22146/jik.57459

Kumar, I., Bandaru, V., Yampracha, S., Sun, L., & Fungtammasan, B. (2020). Limiting rice and sugarcane residue burning in Thailand: Current status, challenges and strategies. Journal of Environmental Management, 276, 111228. https://doi.org/10.1016/j.jenvman.2020.111228

Kurovsky, A., Kornievskaya, E., Gummer, Y., Babenko, A., & Saratchandra Babu, M. (2021). The balance of nitrogen forms and number of microorganisms of the nitrogen cycle in vermicomposts based on leaf litter and cow manure. IOP Conference Series: Earth and Environmental Science, 935(1), 012002. https://doi.org/10.1088/1755-1315/935/1/012002

Kusumastuti, A., Indrawati, W., Supriyanto, & Kurniawan, A. (2022). Keanekaragaman mesofauna tanah dan aktivitas mikroorganisme tanah pada vegetasi nilam di berbagai dosis biochar dan pupuk majemuk NPK. Agriprima : Journal of Applied Agricultural Sciences, 6(2), 145–162. https://doi.org/10.25047/agriprima.v6i2.488

Li, T., Liang, J., Chen, X., Wang, H., Zhang, S., Pu, Y., ..., & Liu, X. (2021). The interacting roles and relative importance of climate, topography, soil properties and mineralogical composition on soil potassium variations at a national scale in China. Catena, 196, 104875. https://doi.org/10.1016/j.catena.2020.104875

Lolo, E. U., Widianto, Gunawan, I. R., Pambudi, Y. S., & Ngalung, A. D. (2022). Analisa dampak lingkungan terhadap budidaya tebu dengan life cycle assesment menggunakan OpenLCA 1.10.3 (Studi kasus : Pabrik Gula Madukismo, Yogyakarta). Serambi Engineering, 7(3), 3597–3608. https://doi.org/10.32672/jse.v7i3.4637

Magurran, A. E. (1988). Ecological diversity and its measurement. Chapman and Hall. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=X7b7CAAAQBAJ&oi=fnd&pg=PP7&dq=Ecological+Diversity+and+Its+Measurement&ots=dat8VjKqHn&sig=sQiREErjKNcltN48NlCfv0IDHdg&redir_esc=y#v=onepage&q=Ecological%20Diversity%20and%20Its%20Measurement&f=false

Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A. K. (2008). Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environmental Monitoring and Assessment, 136(1–3), 419–435. https://doi.org/10.1007/s10661-007-9697-z

Odum, E. P. (1993). Dasar‑dasar ekologi (Fundamentals of ecology). Diterjemahkan Oleh TJ Samingan. Gajah Mada University. Retrieved from https://scholar.google.co.id/scholar?cites=7623886473385055053&as_sdt=2005&sciodt=0,5&hl=id

Panggabean, R. J., Meiriani, M., & Hanum, C. (2017). Respons pertumbuhan bibit bud sets tebu terhadap dosis dan frekuensi pemberian pupuk N, P dan K. Jurnal Agroekoteknologi, 5(4), 774–779. https://doi.org/10.32734/ja.v5i4.2490

Prayoga, N. A., Rahardjo, B. T., & Widjayanti, T. (2021). Keanekaragaman jenis semut (Hymenoptera: Formicidae) pada ekosistem tanaman tebu pht dan konvensional. Jurnal Hama dan Penyakit Tumbuhan, 9(3), 78–84. https://doi.org/10.21776/ub.jurnalhpt.2021.009.3.2

Puga, J. R. L., Moreira, F., & Keizer, J. J. (2024). Immediate impacts of wild fires on ground-dwelling macroinvertebrate communities under stones in Mediterranean Oak Forests. Environmental Management, 74, 684–698. https://doi.org/10.1007/s00267-024-02006-z

Putra, I. M., Hadi, M., & Rahadian, R. (2019). The dominance of tramps ants in the settlement area of Semarang, Central Java. Biosaintifika, 11(3), 377–384. Retrieved from https://journal.unnes.ac.id/nju/biosaintifika/article/view/21026

Rizal, M., Zuraida, Z., & Ilyas, I. (2023). Karakterisasi beberapa sifat kimia tanah pada lahan terbakar dan tidak terbakar di Taman Hutan Raya Pocut Meurah Intan Aceh. Jurnal Ilmiah Mahasiswa Pertanian, 8(4), 716–721. https://doi.org/10.17969/jimfp.v8i4.27751

Sanches, G. M., Graziano Magalhães, P. S., & Junqueira Franco, H. C. (2019). Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes. Geoderma, 334, 90–98. https://doi.org/10.1016/j.geoderma.2018.07.051

Souza, R. A., Telles, T. S., Machado, W., Hungria, M., Filho, J. T., & Guimarães, M. de F. (2012). Effects of sugarcane harvesting with burning on the chemical and microbiological properties of the soil. Agriculture, Ecosystems and Environment, 155, 1–6. https://doi.org/10.1016/j.agee.2012.03.012

Subiyakto, Sujak, & Sunarto, D. A. (2020). Burning effect of sugarcane residue after cutting on the diversity of arthropods in ratoon sugarcane. International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), 8, 117–122. https://doi.org/10.2991/absr.k.200513.020

Thagunna, B., & Kaur, J. (2022). An overview of sugarcane: Production, harvesting, benefits, preservation, and value-added products. European Journal of Pharmaceutical and Medical Research, 9(9), 147–153. Retrieved from https://www.ejpmr.com/home/abstract_id/10000

Vasconcellos, R. L. F., Segat, J. C., Bon, J. A., Baretta, D., & Cardoso, E. J. B. N. (2013). Soil macrofauna as an indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages. European Journal of Soil Biology, 58, 105–112. https://doi.org/10.1016/j.ejsobi.2013.07.001

Wang, C., Strazanac, J., & Butler, L. (2000). Abundance, diversity, and activity of ants (Hymenoptera: Formicidae) in oak-domainated mixed appalachian forests treated with microbial pesticides. Environmental Entomology, 29(3), 579–586. https://doi.org/10.1603/0046-225X-29.3.579

Wasis, B., Winata, B., & Marpaung, D. R. (2018). Impact of land and forest fire on soil fauna diversity in several land cover in Jambi Province, Indonesia. Biodiversitas, 19(2), 740–746. https://doi.org/10.13057/biodiv/d190249

Wienhold, B. J., Andrews, S. S., & Karlen, D. L. (2004). Soil quality: A review of the science and experiences in the USA. Environmental Geochemistry and Health, 26(2), 89–95. https://doi.org/10.1023/B:EGAH.0000039571.59640.3c

Wu, X., Shen, C., Ma, X., Hu, L., He, Y., Shang, H., & Fu, D. (2023). Soil moisture and available phosphorus as the factors driving variation in functional characteristics across different restoration communities in a subtropical mountain ecosystem. Biology, 12(3), 427. https://doi.org/10.3390/biology12030427

Zhang, X., Lu, Y., Wang, Q., & Qian, X. (2019). A high-resolution inventory of air pollutant emissions from crop residue burning in China. Atmospheric Environment, 213, 207–214. https://doi.org/10.1016/j.atmosenv.2019.06.009

Zhou, Y., Liu, C., Ai, N., Tuo, X., Zhang, Z., Gao, R., Qin, J., & Yuan, C. (2021). Characteristics of soil macrofauna and its coupling relationship with environmental factors in the Loess Area of Northern Shaanxi. Sustainability, 14(5), 2484. https://doi.org/10.3390/su14052484

Refbacks

  • There are currently no refbacks.