Recovery of Valuable Metals from Fly Ash via Hydrometallurgy Method for Li-ion Battery Anode Material

Cornelius Satria Yudha, Enni Apriliyani, Tika Paramitha, Windhu Griyasti Suci, Himmah Sekar Eka Ayu Gustiana


Coal-derived fly ash, or CFA, is a harmful waste for humans. CFA waste handling by its processing and utilization has become the most promising approach, which not only decreases the waste's hazard level but also improves its economic potential. This research aims to recover metals from CFA and utilize them as anode material for Li-ion batteries. Iron, magnesium, aluminum, and calcium are retrieved from the CFA via a two-step hydrometallurgical method, i.e., acid leaching followed by alkaline precipitation. The leaching process utilizes various acids, such as acetic acid (CH3COOH), hydrochloric acid (HCl) and sulfuric acid (H2SO4). Metal precipitation is carried out using sodium hydroxide solution (NaOH). Morphological and quantitative metal composition analysis are investigated using a scanning electron microscope and energy dispersive spectroscopy (SEM-EDX). The physical and chemical properties of the as-prepared samples are characterized using Fourier-transformed Infra-red spectroscopy (FTIR) and Thermal Gravimetry-Differential Thermal Analysis (TG/DTA). Based on the analysis, iron, magnesium and calcium are successfully recovered in a mixed hydroxide precipitate. The type of acid affects the final morphology and composition of the product. Therefore, our approach can be considered effective in CFA waste processing and producing high-quality product.


coal-fly ash; hydrometallurgy; metal; precipitation; waste.

Full Text:



[1] J. Martínez-Lao, Montoya, F. G. Montoya, M.G. Montoya, F. Manzano-Agugliaro, "Electric Vehicles in Spain: An Overview of Charging Systems," Renew. Sustain. Energy Rev.,vol. 77, pp. 970–983, 2017,

doi: 10.1016/j.rser.2016.11.239.

[2] Y. Xing, F. Guo, M. Xu, X. Gui, H. Li, G. Li, Y. Xia, H. Han, "Separation of Unburned Carbon from Coal Fly Ash: A Review," Powder Technol., vol. 353, pp. 372–384, 2019,

doi: 10.1016/j.powtec.2019.05.037.

[3] Verma, C.; Verma, R. Leaching Behaviour of Fly Ash: A Review. Nat. Environ. Pollut. Technol. vol. 18, pp. 403–412, 2019.

Google Scholar

[4] M. A. Kamal, "Recycling of Fly Ash as an Energy Efficient Building Material: A Sustainable Approach," Key Eng. Mater, vol. 692, pp. 54–65, 2016,

doi: 10.4028/

[5] S. Ramanathan, S. C. B. Gopinath, M. K. M. Arshad, P. Poopalan, "Nanostructured Aluminosilicate from Fly Ash: Potential Approach in Waste Utilization for Industrial and Medical Applications," J. Clean. Prod, vol. 253, pp. 119923, 2020,

doi: 10.1016/j.jclepro.2019.119923.

[6] A. Dindi, D. V. Quang, L. F. Vega, E. Nashef, M. R. M. Abu-Zahra, "Applications of Fly Ash for CO2 Capture, Utilization, and Storage," J. CO2 Util., vol. 29, pp. 82–102, 2019,

doi: 10.1016/j.jcou.2018.11.011.

[7] A. Jumari, C. S. Yudha, H. Widiyandari, A. P. Lestari, "SiO2/C Composite as a High Capacity Anode Material of LiNi0.8Co0.15Al0.05O2 Battery Derived from Coal Combustion Fly Ash," Appl. Sci., vol. 10, pp. 1–13, 2020,

doi: 10.3390/app10238428.

[8] M. G. Miricioiu and V. C. Niculescu, "Fly Ash, from Recycling to Potential Raw Material for Mesoporous Silica Synthesis," Nanomaterials, vol. 10. pp. 1–14, 2020,

doi: 10.3390/nano10030474.

[9] M. Li, J. Lu, Z. Chen, K. Amine, "30 Years of Lithium-Ion Batteries," Adv. Mater, vol. 30, no. 33, 2018,

doi: 10.1002/adma.201800561.

[10] C. S. Yudha, M. Rahmawati, A. Jumari, A. P. Hutama, A. Purwanto, "Synthesis of Zinc Oxide (ZnO) from Zinc Based-Fertilizer as Potential and Low-Cost Anode Material for Lithium Ion Batteries," Proceedings of the ACM International Conference Proceeding Series; Association for Computing Machinery, pp. 1–6, 2020,

doi: 10.1145/3429789.3429860.

[11] E. A. Olivetti, G. Ceder, G. G. Gaustad, X. Fu, "Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals," Joule, vol. 1, no. 2, pp. 229–243, 2017,

doi: 10.1016/j.joule.2017.08.019.

[12] P. Long, Q. Xu, G. Peng, X. Yao, X. Xu, "NiS Nanorods as Cathode Materials for All-Solid-State Lithium Batteries with Excellent Rate Capability and Cycling Stability," ChemElectroChem, vol. 3, no. 5, pp. 764–769, 2016,

doi: 10.1002/celc.201500570.

[13] M. Du, C. Xu, J. Sun, L. Gao, "Synthesis of α-Fe2O3 Nanoparticles from Fe(OH)3 Sol and Their Composite with Reduced Graphene Oxide for Lithium Ion Batteries," J. Mater. Chem. A., vol. 1, no. 24, pp. 7154–7158, 2013,

doi: 10.1039/c3ta00183k.

[14] K. A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. M. Hercule, C. Lin, C. Shi, Q. Wei, et al., "Low-Crystalline Iron Oxide Hydroxide Nanoparticle Anode for High-Performance Supercapacitors," Nat. Commun., vol. 8, 2017,

doi: 10.1038/ncomms14264.

[15] S. U. Muzayanha, C. S. Yudha, L. M. Hasanah, A. Nur, A. Purwanto, "Effect of Heating on the Pretreatment Process for Recycling Li-Ion Battery Cathode," JKPK (Jurnal Kim. dan Pendidik. Kim, vol. 4. no. 2, 2019,

doi: 10.20961/jkpk.v4i2.29906.

[16] X. Xiao, B. W. Hoogendoorn, Y. Ma, S. A. Sahadevan, J. M. Gardner, K. Forsberg, R. T. Olsson, "Ultrasound-Assisted Extraction of Metals from Lithium-Ion Batteries Using Natural Organic Acids," Green Chem, vol. 23, no. 21, pp. 8519–8532, 2021,

doi: 10.1039/d1gc02693c.

[17] S. U. Muzayanha, C. S. Yudha, A. Nur, H. Widiyandari, H. Haerudin, H. Nilasary, F. Fathoni, A. Purwanto, "A Fast Metals Recovery Method for the Synthesis of Lithium Nickel Cobalt Aluminum Oxide Material from Cathode Waste," Metals (Basel), vol. 9. no. 5, pp. 615, 2019,

doi: 10.3390/met9050615.

[18] C. S. Yudha, L. M. Hasanah, S. U. Muzayanha, H. Widiyandari, A. Purwanto, "Synthesis and Characterization of Material LiNi0.8Co0.15Al0.05O2 Using One-Step Co-Precipitation Method for Li-Ion Batteries," JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 4. no. 3, pp. 134, 2019,

doi: 10.20961/jkpk.v4i3.29850.

[19] P. Tanikella and J. Olek, "Updating Physical and Chemical Characteristics of Fly Ash for Use in Concrete," JTRP Tech. Rep., 2017,

doi: 10.5703/1288284315213.

[20] I. Quinzeni, V. Berbenni, D. Capsoni, M. Bini, "Ca- and Al-Doped ZnFe2O4 Nanoparticles as Possible Anode Materials," J. Solid State Electrochem, vol. 22, pp. 2013-2024, 2018,

doi: 10.1007/s10008-018-3901-7.

[21] Y. Yuan, S. Liang, W. Liu, Q. Zhao, P. Peng, R. Ding, P. Gao, X. Sun, E. Liu, "Al-Doped Fe2O3 nanoparticles: Advanced Anode Materials for High Capacity Lithium Ion Batteries," Dalt. Trans., vol. 50, no. 15, pp. 5115-5119, 2021,

doi: 10.1039/d0dt04423g.

[22] S. Wei, D. Di Lecce, D.; R. M. D’Agostini, J. Hassoun, "J. Synthesis of a High-Capacity α-Fe2O3@C Conversion Anode and a High-Voltage LiNi0.5Mn1.5O4Spinel Cathode and Their Combination in a Li-Ion Battery," ACS Appl. Energy Mater., vol. 4, no. 8, pp. 8340-8349, 2021,

doi: 10.1021/acsaem.1c01585.

[23] C. S. Yudha, S. U. Muzayanha, H. Widiyandari, F. Iskandar, W. Sutopo, A. Purwanto, "Synthesis of LiNi0.85Co0.14Al0.01O2 Cathode Material and Its Performance in an NCA / Graphite Full-Battery," Energies, vol. 12, no. 10, pp. 1886, 2019,

doi: 10.3390/en12101886.

[24] F. Rolle and M. Sega, "Use of FTIR Spectroscopy for the Measurement of CO 2 Carbon Stable Isotope Ratios," Proceedings of the 19th International Congress of Metrology, vol. 05002, pp. 1–6, 2019,

doi: 10.1051/metrology/201905002.

[25] K. Coenen, F. Gallucci, B. Mezari, E. Hensen, M. van Sint Annaland, "An In-Situ IR Study on the Adsorption of CO2 and H2O on Hydrotalcites," J. CO2 Util., vol. 24, pp. 228-239, 2018,

doi: 10.1016/j.jcou.2018.01.008.

[26] D. Valeev, A. Mikhailova, A. Atmadzhidi, "Kinetics of Iron Extraction from Coal Fly Ash by Hydrochloric Acid Leaching. Metals (Basel), vol. 8, no. 7, pp. 1-9, 2018,

doi: 10.3390/met8070533.

[27] A. L. Mackay, "β-Ferric Oxyhydroxide," Mineral. Mag. J. Mineral. Soc., vol. 32, no. 250, pp. 545-557, 1960,

doi: 10.1180/minmag.1960.032.250.04.

[28] L. Gulina, V. Tolstoy, L. Kuklo, V. Mikhailovskii, V. Panchuk, V. Semenov, "Synthesis of Fe(OH)3 Microtubes at the Gas–Solution Interface and Their Use for the Fabrication of Fe2O3 and Fe Microtubes," Eur. J. Inorg. Chem., vol. 2018, no. 17, pp. 1842-1846, 2018,

doi: 10.1002/ejic.201800182.

[29] S. K. Kwon, K. Kimijima, K. Kanie, A. Muramatsu, S. Suzuki, E. Matsubara, "Suppression of the Conversion Process of Fe(OH)3 to β-FeOOH and α-Fe2O3 by Silicate Ions," High Temp. Mater. Process., vol. 24, no. 5, pp. 275-287, 2005,

doi: 10.1515/HTMP.2005.24.5.275.

[30] M. Mohapatra and S. Anand, "Synthesis and Applications of Nano-Structured Iron Oxides/Hydroxides – a Review," Int. J. Eng. Sci. Technol., vol. 2, no. 8, pp. 127-146, 2011,

doi: 10.4314/ijest.v2i8.63846.

[31] S. Takanashi and Y. Abe, "Improvement of the Electrochemical Performance of an NCA Positive-Electrode Material of Lithium Ion Battery by Forming an Al-Rich Surface Layer," Ceram. Int., vol. 43, no. 12, pp. 9246-9252, 2017,

doi: 10.1016/j.ceramint.2017.04.080.

[32] E. R. Logan, H. Hebecker, X. Ma, J. Quinn, Y. HyeJeong, S. Kumakura, J. Paulsen, J. R. Dahn, "A Comparison of the Performance of Different Morphologies of LiNi 0.8 Mn 0.1 Co 0.1 O 2 Using Isothermal Microcalorimetry, Ultra-High Precision Coulometry, and Long-Term Cycling," J. Electrochem. Soc., vol. 167, no. 6, 060530, 2020,

doi: 10.1149/1945-7111/ab8620.

[33] X. Zhu, Y. Zhong, H. Zhai, Z. Yan, D. Li, "Nanoflake Nickel Hydroxide and Reduced Graphene Oxide Composite as Anode Materials for High Capacity Lithium Ion Batteries," Electrochim. Acta, vol. 132, pp. 364–369, 2014,

doi: 10.1016/j.electacta.2014.03.132.

[34] M. Y. Cheng, Y. S. Ye, T. M. Chiu, C. J. Pan, B. J. Hwang, "Size Effect of Nickel Oxide for Lithium Ion Battery Anode," J. Power Sources, vol. 253, pp. 27–34, 2014,

doi: 10.1016/j.jpowsour.2013.12.037.

[35] I. Meer and R. Nazir, "Removal Techniques for Heavy Metals from Fly Ash," J. Mater. Cycles Waste Manag., vol. 20, pp. 703–722, 2018,

doi: 10.1007/s10163-017-0651-z.

[36] Y. Han, X. Liu, Z. Lu, "Systematic Investigation of Prelithiated SiO2 Particles for High-Performance Anodes in Lithium-Ion Battery," Appl. Sci., vol. 8, no. 8, 1245, 2018,

doi: 10.3390/app8081245.

[37] A. Purwanto, S. S. Nisa, I. P. Lestari, M. N. Ikhsanudin, C. S. Yudha, H. Widiyandari, "High Performance Nickel Based Electrodes in State-of-the-Art Lithium-Ion Batteries: Morphological Perspectives," KONA Powder Part. J., vol. 39, pp. 130-149, 2022,

doi: 10.14356/kona.2022015.


  • There are currently no refbacks.