Synthesis and Characterization of Material LiNi0.8Co0.15Al0.05O2 Using One-Step Co-Precipitation Method for Li-Ion Batteries

Cornelius Satria Yudha, Luthfi Mufidatul Hasanah, Soraya Ulfa Muzayanha, Hendri Widiyandari, Agus Purwanto


Li-ion battery is an energy storage device which could be applied as power source for electronic devices. The capacity of a battery is determined by the cathode material. Over this last decade, high nickel content cathode material is applied for electric vehicular technology. This study aims to synthesize a nickel-rich cathode material, LiNi0.8Co0.15Al0.05O2 (NCA) via one-step co-precipitation and study its characteristics. The Ni, Co and Al metal ion conversion during co-precipitation were analyzed using Atomic Adsorption Spectroscopy (AAS). Based on X-Ray diffraction analysis, NCA sample exhibited hexagonal-layered structure with high crystallinity. Based on Scherrer equation, the mean crystallite diameter of NCA sample is 40 nm. Scanning electron microscope (SEM) showed micron-sized homogenous particles with smooth surface. The final composition of Ni, Co and Al metal were confirmed using XRF. The capacity of the battery was determined using galvanostic test method with voltage range of 2.7-4.25 V using graphite as the counter anode. The initial specific discharge capacity of NCA is 60 mAh/g while the capacity loss per cycle is 1%.


Li-ion batteries; material; cathode; inorganic; electrochemistry

Full Text:



A. Purwanto, C. S. Yudha, U. Ubaidillah, H. Widiyandari, & T. Ogi, “NCA cathode material : synthesis methods and performance enhan-cement efforts NCA cathode material : synthesis methods and performance enhancement efforts,” Mater. Res. Express, vol. 5, no. 12, p. 122001, 2018.

E. M. Erickson, F. Schipper, T. R. Penki, J. Y. Shin, C. Erk, F. F. Chesneau, B. Markovsky, & D. Aurbach, “Review-Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes,” J. Electrochem. Soc., vol. 164, no. 1, pp. A6341–A6348, 2017.

N. Nitta, F. Wu, J. T. Lee, & G. Yushin, “Li-ion battery materials: Present and future,” Mater. Today, vol. 18, no. 5, pp. 252–264, 2015.

P. Kalyani & N. Kalaiselvi, “Various aspects of LiNiO2 chemistry: A review,” Sci. Technol. Adv. Mater., vol. 6, no. 6, pp. 689–703, 2005.

J. Duan, C. Wu, Y. Cao, K. Du, Z. Peng, & G. Hu, “Enhanced electro-chemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating,” Electrochim. Acta, vol. 221, pp. 14–22, 2016.

V. Subramanian & G. T. K. Fey, “Preparation and characterization of LiNi0.7Co0.2Ti0.05M0.05O2 (M=Mg, Al and Zn) systems as cathode materials for lithium batteries,” Solid State Ionics, vol. 148, no. 3–4, pp. 351–358, 2002.

C. Kim, T.-J. Park, S.-G. Min, S.-B. Yang, & J.-T. Son, “Effects of iron doping at 55 °C on LiNi0.85Co0.-10Al0.05O2,” J. Korean Phys. Soc., vol. 65, no. 2, pp. 243–247, 2014.

D. Y. Wan, Z. Y. Fan, Y. X. Dong, E. Baasanjav, H.-B. Jun, B. Jin, E. M. Jin, & S. M. Jeong., “Effect of Metal (Mn , Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries,” Journal of Nanomaterials, vol. 2018, pp. 1-9, 2018.

S. Xia, Y. Zhang, P. Dong, & Y. Zhang, “Synthesis cathode material LiNi 0.80 Co 0.15 Al 0.05 O 2 with two step solid-state method under air stream,” Eur. Phys. J. Appl. Phys., vol. 65, no. 1, p. 10401, 2014.

Z. Qiu, Y. Zhang, D. Wang, & S. Xia, “A ternary oxide precursor with trigonal structure for synthesis,” Solid State Electrochem, 2017.

S. H. Ju, H. C. Jang, & Y. C. Kang, “Al-doped Ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape,” Electrochim. Acta, vol. 52, no. 25, pp. 7286–7292, 2007.

P. PengDong, S. Xia, Y. Zhang, Y. Zhang, Z. Qiu, & Y. Yao, “Influence of Complexing Agents on the Structure and Electrochemical Properties of LiNi0.80Co0.15Al0.05O2 Cathode Synthesized by Sol-Gel Method: a Comparative Study,” Int. J. Electrochem. Sci., vol. 12, pp. 561–575, 2017.

K. Kleiner, D. Dixon, P. Jakes, J. Melke, M. Yavuz, C. Roth, K. Nikolowski, V. Liebau, & H. Ehrenberg, “Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries,” J. Power Sources, vol. 273, pp. 70–82, 2015.

W. Liu, G. Hu, D, Z. Peng, Y. Cao, & Q. Liu, “Synthesis and characterization of LiCoO2-coated LiNi0.8Co0.15Al0.-05O2 cathode materials,” Mater. Lett., vol. 83, pp. 11–13, 2012.

H. Xie, G. Hu, K. Du, Z. Peng, & Y. Cao, “An improved continuous co-precipitation method to synthesize LiNi0.80Co0.15Al0.05O2 cathode mate-rial,” J. Alloys Compd., vol. 666, pp. 84–87, 2016.

J. Seo & J. Lee, “Fast growth of the precursor particles of Li(Ni0.8Co0.-16Al0.04)O2 via a carbonate co-pre-cipitation route and its electrochemical performance,” J. Alloys Compd., vol. 694, pp. 703–709, 2017.

J. Seo & J. Lee, “carbonate co-precipitation route and its electro-chemical performance,” J. Alloys Compd., vol. 694, pp. 703–709, 2017.

L. Jian, C. Bao-Rong, & Z. Hong-Ming, “Effects of Washing and Heat-treatment on Structure and Electro-chemical Charge/Discharge Property for LiNi0.8Co0.15Al0.05O2 Powder,” J. Inorg. Mater., vol. 31, no. 7, p. 773, 2016.

K. D. . Ekawati, A. P. Sholikah, C. S. Yudha, H. Widiyandari, & A. Purwanto, “Comparative Study of NCA Cathode Material Synthesis Methods towards Their Structure Charac-teristics,” 2018 5th Int. Conf. Electr. Veh. Technol., pp. 57–61, 2018.

I. P. Lestari, C. S. Yudha, A. R. Nurohmah, H. Widiyandari, M. N. Ikhsanudin, & A. Purwanto, “Synthesis And Characterization Of Pre-cipitation Method With Green Chelating Agents,” 2018 5th Int. Conf. Electr. Veh. Technol., pp. 53–56, 2018.

S. U. Muzayanha, C. S. Yudha, L. M. Hasanah, A. Nur, & A. Purwanto, “Effect of Heating on the Pretreatment Process for Recycling Li-Ion Battery Cathode,” J. Kim. dan Pendidik. Kim., vol. 4, no. 2, pp. 105–114, 2019.

W. M. Liu, G. R. Hu, Z. D. Peng, K. Du, Y. B. Cao, & Q. Liu, “Synthesis of spherical LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries by a co-oxidation-controlled crystallization method,” Chinese Chem. Lett., vol. 22, no. 9, pp. 1099–1102, 2011.

M. Pharr, K. Zhao, X. Wang, Z. Suo, & J. J. Vlassak, “Kinetics of Initial Lithiation of Crystalline Silicon Elec-trodes of Lithium-Ion Batteries,” 2012.

Z. Qiu, Y. Zhang, S. Xia, & Y. Yao, “A facile method for synthesis of LiNi 0 .8Co0.15Al0.05O2 cathode material,” Solid State Ionics, vol. 307, no. April, pp. 73–78, 2017.

Y. Kim & D. Kim, “Synthesis of High-Density Nickel Cobalt Aluminum Hydroxide by Continuous Coprecipi-tation Method,” ACS Appl. Mater. Interfaces, vol. 4, pp. 586–589, 2012.

F. Lin, D. Nordlund, Y. Li, M. K. Quan, L. Cheng, T.-C. Weng, Y. Liu, H. L. Xin & M. M. Doeff, “Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries,” Nat. Energy, vol. 1, no. 1, pp. 1–8, 2016.

K. He, Z. Ruan, X. Teng, & Y. Zhu, “Facile synthesis and electrochemical properties of spherical LiNi0.85−x-Co0.15AlxO2with sodium aluminate via co-precipitation,” Mater. Res. Bull., vol. 90, pp. 131–137, 2017.

H. Z. Zhang, C. Liu, D. W. Song, L. Q. Zhang & L. J. Bie, “A new synthesis strategy towards enhancing the structure and cycle stabilities of the LiNi0.80Co0.15Al0.05O2 cathode material,” J. Mater. Chem. A, vol. 5, no. 2, pp. 835–841, 2017.

J. M. Tarascon & M. Armand, “Issues and challenges facing re-chargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, 2001.

I. Hwang, C. W. Lee, J. C. Kim, & S. Yoon, “Particle size effect of Ni-rich cathode materials on lithium ion battery performance,” Mater. Res. Bull., vol. 47, no. 1, pp. 73–78, 2012.

S. U. Muzayanha, C. S. Yudha, A. Nur, H. Widiyandari, H. Haerudin, H. Nilasary, F. Fathoni, & A. Purwanto, “A Fast Metals Recovery Method for the Synthesis of Lithium Nickel Cobalt Aluminum Oxide Material from Cathode Waste,” Metals (Basel)., vol. 9, no. 615, 2019.


  • There are currently no refbacks.