Remazol Briliant Blue Uptake by Green and Low-Price Black Carbon from Ilalang Weeds (Imperata cylindrica) Activated by KOH Solution

Ngatijo Ngatijo, Edwin Permana, Lusi Pitri Yanti, Bayu Ishartono, Rahmat Basuki

Abstract

Synthesis of activated carbon (AC) from green, low-price, and renewable source as a pollutant adsorbent is growing interest of researcher. This work aims to synthesis of AC from Ilalang weed (Imperata cylindrica) (IW-AC) with KOH activator as a green and low price Remazol Brilliant Blue dye (RBB) adsorbent. The success IW-AC synthesis was evidently characterized by Fourier Transform-Infrared (FT-IR) and Scanning Electron Microscopy (SEM). The effects of initial solution pH, adsorbent dosage, initial RBB concentration, and contact time were systematically investigated. Results showed the optimum condition of RBB adsorption was occurred at low pH (2.0-4.0) and 75 mg of adsorbent dosage. Under the optimum condition, the equilibrium adsorption data fitted well to the Langmuir isotherm with the adsorption capacity of RBB uptake was 13.42 mg/g. Calculation of adsorption energy by Dubinin-Radushkevich (D-R) isotherm model (13.39 kJ/mol) showed that the electrostatic interaction was the main interaction of RBB adsorption on IW-AC. Adsorption kinetics showed that the adsorption behavior followed the Ho pseudo-second-order kinetic model. The experimental results of this work demonstrate that the IW-AC can be used as a promising green and low-cost adsorbent for removal of anionic dyes from aqueous solution.

Keywords

Adsorption; Green and low-proce adsorbent; Ilalang weed-activated carbon; Remazol brilliant blue uptake; KOH activator

Full Text:

PDF

References

M. Behera, J. Nayak, S. Banerjee, S. Chakrabortty, and S. K. Tripathy, “A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach,” J. Environ. Chem. Eng., p. 105277, 2021,

doi: 10.1016/j.jece.2021.105277

G. Kour, R. Kothari, R. Azam, P. K. Majhi, S. Dhar, D. Pathania, and V. V Tyagi, “Conducting Polymer Based Nanoadsorbents for Removal of Heavy Metal Ions/Dyes from Wastewater,” in Advances in Hybrid Conducting Polymer Technology, Springer, 2021, pp. 135–157.

doi: 10.1007/978-3-030-62090-5_7

R. Kishor, D. Purchase, G. D. Saratale, R. G. Saratale, L. F. R. Ferreira, M. Bilal, R. Chandra, and R. N. Bharagava, “Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety,” J. Environ. Chem. Eng., p. 105012, 2021,

doi: 10.1016/j.jece.2020.105012

M. Malakootian, K. Kannan, M. A. Gharaghani, A. Dehdarirad, A. Nasiri, Y. D. Shahamat, and H. Mahdizadeh, “Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor,” J. Environ. Chem. Eng., vol. 7, no. 6, p. 103457, 2019,

doi: 10.1016/j.jece.2019.103457

H. Te Hsu, S. S. Chen, and Y. S. Chen, “Removal of chromium(VI) and naphthalenesulfonate from textile wastewater by photocatalysis combining ionic exchange membrane processes,” Sep. Purif. Technol., vol. 80, no. 3, pp. 663–669, 2011,

doi: 10.1016/j.seppur.2011.06.032

L. Bukman, N. R. C. Fernandes-Machado, W. Caetano, A. L. Tessaro, and N. Hioka, “Treatment of wastewater contaminated with ionic dyes: Liquid-liquid extraction induced by reversed micelle followed by photodegradation,” Sep. Purif. Technol., vol. 189, no. August, pp. 162–169, 2017,

doi: 10.1016/j.seppur.2017.08.004

M. P. da Silva, A. C. A. de Souza, L. E. de Lima Ferreira, L. M. Pereira Neto, B. F. Nascimento, C. M. B. de Araújo, T. J. M. Fraga, M. A. da Motta Sobrinho, and M. G. Ghislandi, “Photodegradation of Reactive Black 5 and raw textile wastewater by heterogeneous photo-Fenton reaction using amino-Fe3O4-functionalized graphene oxide as nanocatalyst,” Environ. Adv., vol. 4, no. December 2020, p. 100064, 2021,

doi: 10.1016/j.envadv.2021.100064doi: 10.1016/j.envadv.2021.100064.

N. S. Naik, M. Padaki, S. Déon, and D. H. K. Murthy, “Novel poly (ionic liquid)-based anion exchange membranes for efficient and rapid acid recovery from industrial waste,” Chem. Eng. J., vol. 401, no. April, p. 126148, 2020,

doi: 10.1016/j.cej.2020.126148

R. Basuki, B. Rusdiarso, S. J. Santosa, and D. Siswanta, “Magnetite-Functionalized Horse Dung Humic Acid (HDHA) for the Uptake of Toxic Lead (II) from Artificial Wastewater,” Adsorpt. Sci. Technol., vol. 2021, no. 5523513, pp. 1–15, 2021, doi: 10.1155/2021/5523513.

doi: 10.1155/2021/5523513

N. Ngatijo, N. Gusmaini, R. Bemis, and R. Basuki, “Adsorpsi Methylene Blue pada Nanopartikel Magnetit tersalut Asam Humat: Kajian Isoterm dan Kinetika,” CHEESA Chem. Eng. Res. Artic., vol. 4, no. 1, pp. 51–64, 2021,

doi: 10.25273/cheesa.v4i1.8433.51-64

Y. Zhou, M. Zhang, X. Wang, Q. Huang, Y. Min, T. Ma, and J. Niu, “Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose,” Ind. Eng. Chem. Res., vol. 53, no. 13, pp. 5498–5506, 2014,

doi: 10.3923/JBS.2007.222.230

B. Rusdiarso and R. Basuki, “Stability Improvement of Humic Acid as Sorbent through Magnetite and Chitin Modification,” J. Kim. Sains dan Apl., vol. 23, no. 5, pp. 152–159, 2020,

doi: 10.1021/ie404135y

M. A. K. M. Hanafiah, W. S. W. Ngah, H. Zakaria, and S. C. Ibrahim, “Batch study of liquid-phase absorption of lead ions using lalang (Imperata cylindrica) leaf powder,” Journal of Biological Sciences, vol. 7, no. 2. pp. 222–230, 2007.

doi: 10.14710/jksa.23.5.152-159

T. Huda and T. K. Yulitaningtyas, “Kajian adsorpsi methylene blue menggunakan selulosa dari alang-alang,” IJCA (Indonesian J. Chem. Anal., vol. 1, no. 01, pp. 9–19, 2018, doi: 10.20885/ijca.vol1.iss1.art2

A. A. Erprihana and D. Hartanto, “Pembuatan Karbon Aktif Dari Kulit Jeruk Keprok (Citrus Reticulata) Untuk Adsorbsi Pewarna Remazol Brilliant Blue,” J. Bahan Alam Terbarukan, vol. 3, no. 2, pp. 60–65, 2014,

doi: 10.15294/jbat.v3i2.3699

B. S. Pratama, “Konversi ampas tebu menjadi biochar dan karbon aktif untuk penyisihan Cr (VI),” J. Rekayasa Bahan Alam dan Energi Berkelanjutan, vol. 2, no. 1, pp. 7–12, 2018.

Google Scholar

A. Arevalo-Gallegos, Z. Ahmad, M. Asgher, R. Parra-Saldivar, and H. M. N. Iqbal, “Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review,” Int. J. Biol. Macromol., vol. 99, pp. 308–318, 2017,

doi:10.1016/j.ijbiomac.2017.02.097

L. Maulinda, Z. A. Nasrul, and D. N. Sari, “Pemanfaatan kulit singkong sebagai bahan baku karbon aktif,” J. Teknol. Kim. Unimal, vol. 4, no. 2, pp. 11–19, 2017,

doi: 10.29103/jtku.v4i2.69

L. Efiyanti, S. A. Wati, and M. Maslahat, “Pembuatan dan Analisis Karbon Aktif dari Cangkang Buah Karet dengan Proses Kimia dan Fisika,” J. Ilmu Kehutan., vol. 14, no. 1, pp. 94–108, 2020,

doi: 10.22146/jik.57479

E. Erawati and A. Fernando, “Pengaruh jenis aktivator dan ukuran karbon aktif terhadap pembuatan adsorbent dari serbik gergaji kayu sengon (Paraserianthes Falcataria),” J. Integr. Proses, vol. 7, no. 2, pp. 58–66, 2018.

doi: 10.36055/jip.v7i2.3808

M. F. P. Sari, P. Loekitowati, and R. Moehadi, “Penggunaan Karbon Aktif Dari Ampas Tebu Sebagai Adsorben Zat Warna Procion Merah Dari Industri Songket,” J. Pengelolaan Sumberd. Alam dan Lingkung. (Journal Nat. Resour. Environ. Manag., vol. 7, no. 1, pp. 37–40, 2017, doi: 10.29244/jpsl.7.1.37-40.

A. Husin and A. Hasibuan, “Studi Pengaruh Variasi Konsentrasi Asam Posfat (H3PO4) dan Waktu Perendaman Karbon terhadap Karakteristik Karbon Aktif dari Kulit Durian,” J. Tek. Kim. USU, vol. 9, no. 2, pp. 80–86, 2020,

doi: 10.32734/jtk.v9i2.3728

L. Hakim and E. Sedyadi, “Synthesis and Characterization of Fe3O4 Composites Embeded on Coconut Shell Activated Carbon,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 5, no. 3, pp. 245–253,

a>Google Scholar

F. I. Nuria, M. Anwar, and D. Y. Purwaningsih, “Pembuatan Karbon Aktif dari Enceng Gondok,” J. TECNOSCIENZA, vol. 5, no. 1, pp. 37–48, 2020.

Google Scholar

P. Kuptajit, N. Sano, K. Nakagawa, and T. Suzuki, “A study on pore formation of high surface area activated carbon prepared by microwave-induced plasma with KOH (MiWP-KOH) activation: Effect of temperature-elevation rate,” Chem. Eng. Process. - Process Intensif., vol. 167, no. June, p. 108511, 2021,

doi: 10.1016/j.cep.2021.108511

W. Chen, M. Gong, K. Li, M. Xia, Z. Chen, H. Xiao, Y. Fang, Y. Chen, H. Yang, and H. Chen, “Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH,” Appl. Energy, vol. 278, no. 115730, pp. 1–12, 2020,

doi: 10.1016/j.apenergy.2020.115730

J. Wang, S. Lei, and L. Liang, “Preparation of porous activated carbon from semi-coke by high temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline,” Appl. Surf. Sci., vol. 530, no. April, p. 147187, 2020,

doi: 10.1016/j.apsusc.2020.147187

F. Hanum, R. J. Gultom, and M. Simanjuntak, “Adsorpsi Zat Warna Metilen Biru dengan Karbon Aktif dari Kulit Durian Menggunakan KOH dan NAOH sebagai Aktivator,” J. Tek. Kim. USU, vol. 6, no. 1, pp. 49–55, 2017,

a>doi: 10.32734/jtk.v6i1.1565

A. Khilya and A. T. Prasetya, “Optimasi Aplikasi Arang Aktif Alang-Alang dalam Menurunkan Kadar Cd2+ pada Larutan,” Indones. J. Chem. Sci., vol. 5, no. 1, 2016,

doi: 10.15294/usej.v5i3.13185

K. Elly, “Pemanfaatan cangkang kelapa sawit sebagai arang aktif,” J. Penelit. Ilmu-Ilmu Tek., vol. 8, no. 2, pp. 96–103, 2008.

Google Scholar

M. O. Esterlita and N. Herlina, “Pengaruh penambahan aktivator ZnCl2, KOH, dan H3PO4 dalam pembuatan karbon aktif dari pelepah aren (Arenga Pinnata),” J. Tek. Kim. USU, vol. 4, no. 1, pp. 47–52, 2015, doi: 10.32734/jtk.v4i1.1460.

doi: 10.32734/jtk.v4i1.1460

T. S. Hui and M. A. A. Zaini, “Potassium hydroxide activation of activated carbon: A commentary,” Carbon Lett., vol. 16, no. 4, pp. 275–280, 2015,

doi: 10.5714/CL.2015.16.4.275.

A. Hidayati, S. Kurniawan, N. W. Restu, and B. Ismuyanto, “Potensi ampas tebu sebagai alternatif bahan baku pembuatan karbon aktif,” Nat. B, vol. 3, no. 4, pp. 311–317, 2016,

Google Scholar

Z. A. Nasution and S. M. Rambe, “Karakterisasi dan identifikasi gugus fungsi dari karbon cangkang kelapa sawit dengan metode methano-pyrolysis,” J. Din. Penelit. Ind., vol. 24, no. 2, pp. 108–113, 2013,

doi: 10.28959/jdpi.v24i2.530

Z. Z. Zam, N. A. Limatahu, and N. J. Baturante, “Nitrate Adsorption capacity of Activated Gamalama Volcanic Ash,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 6, no. 1, pp. 23–28,

doi:10.20961/jkpk.v6i1.48462

M. A. Ahmad and N. K. Rahman, “Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon,” Chem. Eng. J., vol. 170, no. 1, pp. 154–161, 2011,

doi: 10.1016/j.cej.2011.03.045

S. Sy, D. Kurniawati, I. Lestari, H. Harmiwati, and M. Kasman, “Pengaruh pH dan dosis adsorben dari limbah lumpur aktif industri crumb rubber terhadap kapasitas penyerapan ion Cd (II) dan Zn (II),” J. Litbang Ind., vol. 8, no. 2, pp. 95–104, 2018,

doi: 10.24960/jli.v8i2.4290.95-104

A. W. K. Wahyuningsih, I. Ulfin, and S. Suprapto, “Pengaruh pH dan Waktu Kontak Pada Adsorpsi Remazol Brilliant Blue R Menggunakan Adsorben Ampas Singkong,” J. Sains dan Seni ITS, vol. 7, no. 2, pp. 17–19, 2019,

doi: 10.12962/j23373520.v7i2.30070

I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Mica,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, 1918,

doi: 10.1021/ja02242a004

H. Freundlich, “Uber die Adsorption in Losungen,” Zeitschrift für Phys. Chemie, vol. 57, no. (1), pp. 385–470, 1960,

doi: 10.1515/zpch-1907-5723

M. M. Dubinin and L. V. Radushkevich, “The equation of the characteristic curve of the activated charcoal USSR,” Proc. Acad. Sci. Phys. Chem. Sect., vol. 55, pp. 331–337, 1947.

Google Scholar

P. Sathishkumar, M. Arulkumar, and T. Palvannan, “Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR),” J. Clean. Prod., vol. 22, no. 1, pp. 67–75, 2012, doi: 10.1016/j.jclepro.2011.09.017

P. Saha, S. Chowdhury, S. Gupta, and I. Kumar, “Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin,” Chem. Eng. J., vol. 165, no. 3, pp. 874–882, 2010,

doi: 10.1016/j.cej.2010.10.048

S. Shen, T. Pan, X. Liu, L. Yuan, Y. Zhang, J. Wang, and Z. Guo, “Adsorption of Pd(II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J,” J. Colloid Interface Sci., vol. 345, no. 1, pp. 12–18, 2010, doi: 10.1016/j.jcis.2010.01.049.

S. Lagergren, “Kungliga svenska vetenskapsakademiens,” Handlingar, vol. 24, no. 4, pp. 1–39, 1898.

doi: 10.12691/ijebb-4-2-4

Y. S. Ho and G. McKay, “Sorption of dye from aqueous solution by peat,” Chem. Eng. J., vol. 70, no. 2, pp. 115–124, 1998,

doi: 10.1016/S0923-0467(98)00076-1

B. Rusdiarso, R. Basuki, and S. J. Santosa, “Evaluation of Lagergren kinetics equation by using novel kinetics expression of sorption of Zn 2+ onto horse dung humic acid (HD-HA),” Indones. J. Chem., vol. 16, no. 3, pp. 338–346, 2016,

DOI: 10.22146/ijc.21151

R. Basuki, Ngatijo, S. J. Santosa, and B. Rusdiarso, “Comparison the new kinetics equation of noncompetitive sorption Cd(II) and Zn(II) onto green sorbent horse dung humic acid (HD-HA),” Bull. Chem. React. Eng. Catal., vol. 13, no. 3, pp. 475–488, 2018,

doi: 10.9767/bcrec.13.3.1774.475-488

Refbacks

  • There are currently no refbacks.