Synthesis and Characterization of Fe3O4 Composites Embeded on Coconut Shell Activated Carbon

Luqman Hakim, Endaruji Sedyadi


Synthesis and characterization of Fe3O4-coconut shell activated carbon composites has been carried out to create a magnetic adsorbents. Composites were synthesized using the coprecipitation reflux method by mixing a solution of Fe3+/Fe2+ iron salt (mol ratio 2:1) and suspension of activated carbon in water followed by the addition of NaOH solution. The structure, functional groups, morphology and surface area of the composites were characterized using FTIR, XRD, SEM and GSA. The magnetic properties of composites are tested by response to magnetic fields. The characterization results showed that the embedment of Fe3O4 on coconut shell activated carbon was successfully carried out through the interaction of hydroxyl groups at wave numbers 601.79 and 416.62 cm-1. Diffraction peaks at 2θ 30.12° [220], 35.58° [311], 43.14° [400], 53.57° [422], 57.18° [511] and 62.83° [440] indicate the existence magnetite sized of 11.72 nm. Activated carbon has an average pore size of micropores with an average pore of 1.46 nm. Magnetite embedment reduced the surface area of activated carbon from 91.16 m2/g to 12.04 m2/g. The response of sample to the magnetic field indicates that composite has magnetic properties.


Magnetic adsorbent; activated carbon; pyrolysis; coconut shell; Fe3O4; coprecipitation

Full Text:



E. Hambali, S. Mujdalipah, A. H. Tambunan, A. W. Pattiwiri dan R. Hendroko, Teknologi Bioenergi, Kedua penyunt., Jakarta: AgroMedia, 2008.

ISBN: 979-006-113-7

O. B. Akpor, G. O. Ohiobor and T. D. Olaolu, "Heavy Metal Pollutans in Wastewater Effluent: Sources, Effect and Remediation," Advances in Bioscience and Bioengineering, vol. 2, no. 4, pp. 37-43, 2014.


S. Rengaraj, K.-H. Yeon dan S.-H. Moon, “Removal of Chromium from Water and Wastewater by Ion Exchange Resins,” Journal of Hazardous Materials, pp. 273-287, 2001.

DOI: 10.1016/s0304-3894(01)00291-6

V. J. Inglezakis and S. Poulopoulos, Adsorption, Ion Exchange and Catalysis, Amsterdam: Elsevier, 2006.

DOI: 10.1016/B978-0-444-52783-7.X5000-9

E. Sedyadi dan K. Huda, “Kajian Adsorpsi Remazol Yellow FG oleh Montmorilonit-Kitosan,” Integrated Lab Journal, vol. 4, no. 2, pp. 139-152, 2016.

Google Scholar

B. V. Devi, A. A. Jahagirdar dan M. N. Z. Ahmed, “Adsorption of Chromium on Activated Carbon Prepared from Coconut Shell,” vol. 2, no. 5, pp. 364-370, 2012.

Google Scholar

F. Woodard, Industrial Waste Treatment Handbook, 2nd ed., Woburn: Butterworth-Heinemann, 2005.

Google Scholar

H. S. Bamufleh, “Adsorption of Dibenzothiophene (DBT) on Activated Carbon from Dates’ Stones Using Phosphoric Acid (H3PO4),” JKAU: Eng. Sci, vol. 22, no. 2, pp. 80-105, 2011.

DOI: 10.4197/Eng.22-2.5R

R. Labied, O. Benturki, A. Y. E. Hamitouche dan A. Donnot, “Adsorption of Hexavalent Chromium by Activated Carbon Obtained From a Waste Lignocellulosic Material,” Adsorption Science & Technology, vol. 36, no. 3-4, 2018.

DOI: 10.1177/0263617417750739

M. K. Rai, G. Shahi, V. Meena, R. Meena, S. Chakraborty, R. S. Singh dan B. N. Rai, “Removal of Hexavalent Chromium Cr (VI) Using Activated Carbon From Mango Kernel Activated With H3PO4,” Resource Efficient Technologies, vol. 2, pp. 63-70, 2016.

DOI: 10.1016/j.reffit.2016.11.011

O. Ioannidou dan A. Zabaniotou, “Agricultural Residues as Precursors for Activated Carbon Production - A Review,” vol. 11, no. 9, pp. 1966-2005, Desember 2007.

DOI: 10.1016/j.rser.2006.03.013

N. B. o. C. &. Engineers, The Complete Book on Coconut & Coconut Products, India: Asia Pacific Business Press Inc., 2006.

Google Scholar

A. K. Bledzki, A. A. Mamuna and J. Volk, "Barley husk and Coconut Shell Reinforced Polypropylene Composite: The Effect of Fibre Physical, Chemical and Surface Properties," Composite Science and Technology, vol. 70, pp. 840-846, 2010.

DOI: 10.1016/j.compscitech.2010.01.022

G. M. ElShafei, I. M. ElSherbiny, A. S. Darwish dan C. A. Philip, “Artichoke as a non-conventional precursor for activated carbon: Role of the activation process,” Journal of Taibah University for Science, vol. 11, pp. 677-688, 2017.

DOI: 10.1016/j.jtusci.2016.04.006

L. C. Oliviera, R. V. Rios, J. D. Fabris and V. K. Garg, "Activated Carbon/Iron Oxide Magnetic Composites for the Adsorption of Contaminants in Water," Carbon, vol. 40, pp. 2177-2183, 2002.

DOI: 10.1016/S0008-6223(02)00076-3

A. Fisli, A. Ariyani, S. Wardiyati dan S. Yusuf, “Adsorben Magnetit Nanokomposit Fe3O4-Karbon Aktif untuk Menyerap Thorium,” vol. 13, no. Jurnal Sains Materi Indonesia, pp. 192-197, 2012.

DOI: 10.17146/jsmi.2012.13.3.4671

C. Affam, C. C. Wong, M. A. B. Seyam, C. A. A. F. Matt, J. L. A. Sumbai dan A. M. Evuti, “Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron Oxide Composite for Removal Boron and Organics from Wastewaters,” E3S Web Conf., vol. 34, 2018.

DOI: 10.1051/e3sconf/20183402006

M. I. Cabaço, M. Besnard, Y. Danten and J. A. P. Coutinho, "Carbon Dioxide in 1-butyl-3-metylimidazolium acetate. I. Unusual Solubility Investigated by Raman Spectroscopy and DFT Calculations," Journal of Physical Chemistry A, vol. 116, no. 6, pp. 1605-1620, 2012.

DOI: 10.1021/jp211211n

M. Z. Jasni, N. H. Abdullah, S. Abdullah, M. K. A. Abdul Razab, A. Mohammed Noor, M. Mohamed, N. A. A. Nik Yusuf, A. Mohd Amin, M. S. Mat Rasat and M. F. Mohd Amin, "Preparation and Characterization of Activated Carbon from Cocos nucifera L. (Coconut) Shell and Sugar Bagasse," International Journal of Curent Science, Engineering & Technology, vol. 1, no. S1, pp. 416-421, 2018.

DOI: 10.30967/ijcrset.1.s1.2018.416-421

R. A. Nyquist and R. O. Kagel, Infrared Spectra of Inorganic Compounds, New York: Academic Press, Inc., 1971.

Google Scholar

M. I. Khalil, "Co-precipitation in Aqueous Solution Synthesis of Magnetite Nanoparticles Using Iron (III) Salts as Precursors," Arabian Journal of Chemistry, 2015.

DOI: 10.1016/j.arabjc.2015.02.008

H. A. Khalil, M. Jawaid, P. Firoozian, U. Rashid, A. Islam and H. M. Akil, "Activated Carbon from Various Agricultural Waste by Chemical Activation with KOH: Preparation and Characterization," Journal of Biobased Materials and Bioenergy, vol. 7, pp. 1-7, 2013.

DOI: 10.1166/jbmb.2013.1379

A. B. Rajendran, G. Manivannan, K. Jothivenkatachalam and S. Karthikeyan, "Characterization Studies of Activated Carbon From Low Cost Agricultural Waste: Leucaena leucocephala Seed Shell," Rasayan Journal Chemistry, vol. 8, no. 3, pp. 330-338, 2015.

Google Scholar

W. Tan, M. O. Abdullah, L. L. P. Lim and T. H. C. Yeo, "Surface Modification and Characterization of Coconut Shell-Based Activated Carbon Subjected to Acidic and Alkaline Treatments," Jurnal of Applied Science & Process Engineering, vol. 4, no. 2, 2017.

DOI: 10.33736/jaspe.435.2017

L.-Y. Hsu and H. Teng, "Influence of Different Chemichal Reagents on Preparation of Activated Carbons From Bitominous Coal," Fuel Processing Technology, vol. 64, no. 1-3, pp. 155-166, 2000.

DOI: 10.1016/S0378-3820(00)00071-0


  • There are currently no refbacks.