Improvement of Growth Media Quality Using Coconut Coir Dust, Coconut Ash, and Palm Kernel Shell Biochar

Natrah Azira Amran, Susilawati Kasim, Effyanti Mohd Shuib, Martini Mohammad Yusoff

Abstract

The sustainable management of agricultural waste is vital for addressing environmental challenges while enhancing resource efficiency in agriculture. This study aimed to evaluate the potential of agricultural residues, specifically coconut and oil palm by-products, as growth media components. Growth media mixtures were formulated using coconut coir dust (CCD), coconut shell ash (CSA), and palm kernel shell biochar (PKSB), and their physicochemical properties were analyzed. The experiment was conducted in a completely randomized design with three replications. The results indicated that a growth media mixture consisting of 100% CSA demonstrated high pH (7.89), electrical conductivity (2.70 dS m-1), cation exchange capacity (12.57 cmolc kg-1), and significant concentrations of P (13.90 mg l-1) and K (191.70 mg l-1), which suggests its suitability as a liming agent. However, this mixture exhibited limitations in aeration and water retention due to low porosity (24.3%). Furthermore, increasing the proportions of CSA and PKSB significantly enhanced the growth media’s bulk density and particle density. These findings provide valuable insights into developing efficient growth media from agricultural by-products, thereby contributing to sustainable waste management and innovative farming practices.

Keywords

agricultural residues; biochar utilization; growth media development; sustainable waste management

Full Text:

PDF

References

Abad, M., Fornes, F., Carrión, C., Noguera, V., Noguera, P., Maquieira, Á., & Puchades, R. (2005). Physical properties of various coconut coir dusts compared to peat. HortScience, 40(7), 2138–2144. https://doi.org/10.21273/HORTSCI.40.7.2138

Abbas, K., Ghazali, A. M. M., & Ong, S. K. (2019). The effect of particle size of palm kernel shell on the mechanical properties and physical properties of filled natural rubber vulcanizates. Materials Today: Proceedings, 19, 1599–1607. https://doi.org/10.1016/j.matpr.2019.11.188

Abdullah, N., & Sulaiman, F. (2013). The oil palm wastes in Malaysia. Biomass now-sustainable growth and use, 1(3), 75–93. http://dx.doi.org/10.5772/55302

Abu-Hamdeh, N. H., & Al-Jalil, H. F. (1999). Hydraulically powered soil core sampler and its application to soil density and porosity estimation. Soil and Tillage Research, 52(1–2), 113–120. https://doi.org/10.1016/S0167-1987(99)00064-1

Ahmad, R., Hamidin, N., Ali, U. F. M., & Abidin, C. Z. A. (2014). Characterization of bio-oil from palm kernel shell pyrolysis. Journal of Mechanical Engineering and Sciences, 7, 1134–1140. https://doi.org/10.15282/jmes.7.2014.12.0110

Akhtar, M., & Alam, S. M. (2001). Effect of incubation period on phosphate sorption from two P sources. Journal of Biological Sciences, 1(3), 124–125. https://doi.org/10.3923/jbs.2001.124.125

Akinremi, O. O., & Cho, C. M. (1991). Phosphate and accompanying cation transport in a calcareous cation-exchange resin system. Soil Science Society of America Journal, 55(4), 959–964. https://doi.org/10.2136/sssaj1991.03615995005500040010x

Al-Ajlouni, M. G., Othman, Y. A., Abu-Shanab, N. S., & Alzyoud, L. F. (2024). Evaluating the Performance of Cocopeat and Volcanic Tuff in Soilless Cultivation of Roses. Plants, 13(16), 2293. https://doi.org/10.3390/plants13162293

Al-Rohily, K. M., Ghoneim, A. M., Modaihsh, A. S., & Mahjoub, M. O. (2013). Phosphorus availability in calcareous soil amended with chemical phosphorus fertilizer, cattle manure compost, and sludge manure. International Journal of Soil Science, 8(1), 17–24. http://dx.doi.org/10.3923/ijss.2013.17.24

Alves, A. R., Roosch, S., Felde, V. J., Holthusen, D., Brunetto, G., Antonino, A. C. D., Peth, S., & Reichert, J. M. (2024). Long-term organic fertilization with high carbon input improves pore geometry and functionality of no-till sandy soil. Soil and Tillage Research, 244, 106256. https://doi.org/10.1016/j.still.2024.106256

Ameloot, N., De Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., Prins, W., Bouckaert, L., & Sleutel, S. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry, 57, 401–410. https://doi.org/10.1016/j.soilbio.2012.10.025

Ameloot, N., Sleutel, S., Das, K. C., Kanagaratnam, J., & De Neve, S. (2015). Biochar amendment to soils with contrasting organic matter levels: effects on N mineralization and biological soil properties. GCB Bioenergy, 7(1), 135–144. https://doi.org/10.1111/gcbb.12119

Amu, O. O., Owokade, O. S., & Shitan, O. I. (2011). Potentials of coconut shell and husk ash on the geotechnical properties of lateritic soil for road works. International Journal of Engineering and Technology, 3(2), 87–94. Retrieved from https://www.idc-online.com/technical_references/pdfs/civil_engineering/Potentials%20of%20Coconut.pdf

Angalaeeswari, K., & Kamaludeen, S. P. B. (2017). Production and characterization of coconut shell and mesquite wood biochar. International Journal of Chemical Studies, 5(4), 442–446. Retrieved from https://www.chemijournal.com/archives/2017/vol5issue4/PartG/5-4-17-657.pdf

Ansorena, M. J. (1994). Sustratos propiedades y caracterización. Mundi-Prensa. Retrieved from https://scholar.google.co.id/scholar?cluster=9732387851776251362&hl=id&as_sdt=2005&sciodt=0,5

Arnold, P. W. (1977). Soil science and the search for unifying concepts. Journal of Soil Science, 28(3), 393–402. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.5555/19771937320

Asiah, A., MohdRazi, I., MohdKhanif, Y., Marziah, M., & Shaharuddin, M. (2004). Physical and chemical properties of coconut coir dust and oil palm empty fruit bunch and the growth of hybrid heat tolerant cauliflower plant. Pertanika Journal of Tropical Agricultural Science, 27(2), 121–133. Retrieved from https://scholar.google.co.id/scholar?cites=13228771003629815678&as_sdt=2005&sciodt=0,5&hl=id

Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1), 1–18. https://doi.org/10.1007/s11104-010-0464-5

Awang, Y., Shaharom, A. S., Mohamad, R. B., & Selamat, A. (2009). Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. American Journal of Agricultural and Biological Sciences, 4(1), 63–71. https://doi.org/10.3844/ajabssp.2009.63.71

Awotoye, O. O., Adebola, S. I., & Mokwenye, A. I. (2014a). Response of soil chemical properties to ashed and unashed agro-wastes amendments. International Journal of Environmental Sciences, 4(5), 831–839. http://dx.doi.org/10.6088/ijes.2014040404542

Awotoye, O. O., Mokwenye, A. I., & Adebola, S. I. (2014b). Influence of organic wastes amendment on growth and foliar yield of jute mallow Corchorus olitorius (Linn.) in South Western Nigeria. Ethiopian Journal of Environmental Studies and Management, 7(3), 258–266. https://doi.org/10.4314/ejesm.v7i3.5

Balamurugan, V., Ragavendran, C., Arulbalachandran, D., Alrefaei, A. F., & Rajendran, R. (2024). Green synthesis of silver nanoparticles using Pandanus tectorius aerial root extract: Characterization, antibacterial, cytotoxic, and photocatalytic properties, and ecotoxicological assessment. Inorganic Chemistry Communications, 168, 112882. https://doi.org/10.1016/j.inoche.2024.112882

Baon, J. B. (2009). Use of plant-derived ash as potassium fertilizer and its effects on soil nutrient status and cocoa growth. Journal of Tropical Soils, 14(3), 185–193. http://dx.doi.org/10.5400/jts.2009.v14i3.185-193

Berek, A. K., Hue, N. V., Radovich, T. J., & Ahmad, A. A. (2018). Biochars improve nutrient phyto-availability of Hawai’i’s highly weathered soils. Agronomy, 8(10), 203. https://doi.org/10.3390/agronomy8100203

Bernai, M. P., Paredes, C., Sanchez-Monedero, M. A., & Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63(1), 91–99. https://doi.org/10.1016/S0960-8524(97)00084-9

Bhartiya, A., & Dubey, M. (2018). Replacement of cement with coconut shell ash and egg shell powder for preparation of fresh concrete. International Research Journal of Engineering and Technology, 5(6), 1272–1275. Retrieved from https://www.irjet.net/archives/V5/i6/IRJET-V5I6236.pdf

Bittelli, M., Campbell, G. S., & Flury, M. (1999). Characterization of particle‐size distribution in soils with a fragmentation model. Soil Science Society of America Journal, 63(4), 782–788. https://doi.org/10.2136/sssaj1999.634782x

Bordoloi, R., Das, B., Yam, G., Pandey, P. K., & Tripathi, O. P. (2019). Modeling of water holding capacity using readily available soil characteristics. Agricultural Research, 8(3), 347–355. https://doi.org/10.1007/s40003-018-0376-9

Boukhalfa-Deraoui, N., Hanifi-Mekliche, L., & Mihoub, A. (2015). Effect of incubation period of phosphorus fertilizer on some properties of sandy soil with low calcareous content, Southern Algeria. Asian Journal of Agricultural Research, 9(3), 123–131. https://doi.org/10.3923/ajar.2015.123.131

Brassard, P., Godbout, S., & Raghavan, V. (2016). Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. Journal of Environmental Management, 181, 484–497. https://doi.org/10.1016/j.jenvman.2016.06.063

Bunt, A. C. (2012). Modern potting composts. A manual on the preparation and use of growing media for pot plants. Springer Dordrecht. https://doi.org/10.1007/978-94-011-7936-2

Cao, J., Jiang, Y., Tan, X., Li, L., Cao, S., Dou, J., Chen, R., Hu, X., Qiu, Z., Li, M., Chen, Z., & Zhu, H. (2024). Sludge-based biochar preparation: Pyrolysis and co-pyrolysis methods, improvements, and environmental applications. Fuel, 373, 132265. https://doi.org/10.1016/j.fuel.2024.132265

Cayuela, M. L., Van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A., & Sánchez-Monedero, M. A. (2014). Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment, 191, 5–16. https://doi.org/10.1016/j.agee.2013.10.009

Cheah, S., Malone, S. C., & Feik, C. J. (2014). Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover. Environmental Science & Technology, 48(15), 8474–8480. https://doi.org/10.1021/es500073r

Debnath, S., Lancaster, L., & Lung, M. H. (2013). Utilization of agro-industrial waste in metal matrix composites: Towards sustainability. World Academy of Science, Engineering and Technology, 1136–1144. Retrieved from https://espace.curtin.edu.au/handle/20.500.11937/37923

Eghball, B., Power, J. F., Gilley, J. E., & Doran, J. W. (1997). Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. Journal of Environmental Quality, 26(1), 189–193. https://doi.org/10.2134/jeq1997.00472425002600010027x

Eiland, F., Klamer, M., Lind, A. M., Leth, M., & Bååth, E. (2001). Influence of initial C/N ratio on chemical and microbial composition during long-term composting of straw. Microbial Ecology, 41(3), 272–280. Retrieved from https://www.jstor.org/stable/4251820

Fernandes, C., & Corá, J. E. (2004). Bulk density and relationship air/water of horticultural substrate. Scientia Agricola, 61(4), 446–450. https://doi.org/10.1590/S0103-90162004000400015

Fischer, G., Nachtergaele, F., Prieler, S., Van Velthuizen, H. T., Verelst, L., & Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy. Retrieved from https://scholar.google.co.id/scholar?cluster=7076559247322371767&hl=id&as_sdt=2005&sciodt=0,5

Fornes, F., Belda, R. M., Abad, M., Noguera, P., Puchades, R., Maquieira, A., & Noguera, V. (2003). The microstructure of coconut coir dusts for use as alternatives to peat in soilless growing media. Australian Journal of Experimental Agriculture, 43(9), 1171–1179. https://doi.org/10.1071/EA02128

Fredriksson, M., & Johansson, P. (2016). A method for determination of absorption isotherms at high relative humidity levels: Measurements on lime-silica brick and Norway spruce (Picea abies (L.) Karst.). Drying Technology, 34(1), 132-141. https://doi.org/10.1080/07373937.2015.1026511

George, S., & Jayachandran, K. (2013). Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. Journal of Applied Microbiology, 114(2), 373–383. https://doi.org/10.1111/jam.12069

Ghosh, P. K., Sarma, U. S., Ravindranath, A. D., Radhakrishnan, S., & Ghosh, P. (2007). A novel method for accelerated composting of coir pith. Energy & Fuels, 21(2), 822–827. https://doi.org/10.1021/ef060513c

Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and Fertility of Soils, 35(4), 219–230. https://doi.org/10.1007/s00374-002-0466-4

Golueke, C. G. (1991). The biocycle guide to the art and science of composting: Understanding the process, pp. 14–27. Retrieved from https://scholar.google.co.id/scholar?cluster=15243287399981046632&hl=id&as_sdt=2005&sciodt=0,5

Halmi, M. F. A., & Simarani, K. (2021). Diazotrophic population and soil nitrogen dynamics following coapplication of biochar with inorganic fertilizer in the humid tropics. Bragantia, 80, e3521. https://doi.org/10.1590/1678-4499.20210017

Hanudin, E., Iskyati, W., & Yuwono, N. W. (2021). Improving nutritional value of cow manure with biomass ash and its response to the growth and K-Ca absorption of mustard on Inceptisols. IOP Conference Series: Earth and Environmental Science, 752(1), 012015. https://doi.org/10.1088/1755-1315/752/1/012015

Haryati, Z., Loh, S. K., Kong, S. H., & Bachmann, R. T. (2018). Pilot scale biochar production from palm kernel shell (PKS) in a fixed bed allothermal reactor. Journal of Oil Palm Research, 30(3), 485–494. https://doi.org/10.21894/jopr.2018.0043

Hidayat, E., Sarbani, N. M. M., Samitsu, S., Nugroho, F. A. A., Lahiri, S. K., Aoyagi, M., Yonemura, S., & Harada, H. (2024). Evaluation of slow-release fertilizers derived from hydrogel beads: Sodium alginate-poly (acrylic acid) and humic acid-encapsulated struvite for soil salinity amelioration. Arabian Journal of Chemistry, 105877. https://doi.org/10.1016/j.arabjc.2024.105877

Hogg, T. J., & Henry, J. L. (1984). Comparison of 1: 1 and 1: 2 suspensions and extracts with the saturation extract in estimating salinity in Saskatchewan soils. Canadian Journal of Soil Science, 64(4), 699–704. https://doi.org/10.4141/cjss84-069

Isa, N. M., Nasir, N. F., & Hazman, N. (2024). The proximate and ultimate composition of pulverised coconut shell. International Journal of Integrated Engineering, 16(2), 270–277. Retrieved from https://penerbit.uthm.edu.my/ojs/index.php/ijie/article/view/17400

Jaguaribe, E. F., Medeiros, L. D. L., Barreto, M. D. C. S., & Araujo, L. P. D. (2005). The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine. Brazilian Journal of Chemical Engineering, 22, 41–47. https://doi.org/10.1590/S0104-66322005000100005

Kalaivani, K., & Jawaharlal, M. (2019). Study on physical characterization of coco peat with different proportions of organic amendments for soilless cultivation. Journal of Pharmacognosy and Phytochemistry, 8(3), 2283–2286. Retrieved from https://www.phytojournal.com/archives/2019.v8.i3.8349/study-on-physical-characterization-of-coco-peat-with-different-proportions-of-organic-amendments-for-soilless-cultivation

Kamga, P. L. W., Vitoussia, T., Bissoue, A. N., Nguimbous, E. N., Dieudjio, D. N., Bot, B. V., & Njeugna, E. (2024). Physical and energetic characteristics of pellets produced from Movingui sawdust, corn spathes, and coconut shells. Energy Reports, 11, 1291–1301. https://doi.org/10.1016/j.egyr.2024.01.006

Khodaverdiloo, H., Homaee, M., Van Genuchten, M. T., & Dashtaki, S. G. (2011). Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology, 399(1–2), 93–99. https://doi.org/10.1016/j.jhydrol.2010.12.040

Khorsandi, F., & Yazdi, F. A. (2007). Gypsum and texture effects on the estimation of saturated paste electrical conductivity by two extraction methods. Communications in Soil Science and Plant Analysis, 38(7–8), 1105–1117. https://doi.org/10.1080/00103620701278120

Kipp, J. A., Wever, G., & De Kreij, C. (2000). International substrate manual. Analysis, charakteristics and recommendations. Retrieved from https://scholar.google.co.id/scholar?cluster=4450533110872840891&hl=id&as_sdt=2005&sciodt=0,5

Kongthod, T., Thanachit, S., Anusontpornperm, S., & Wiriyakitnateekul, W. (2015). Effects of biochars and other organic soil amendments on plant nutrient availability in an ustoxic quartzipsamment. Pedosphere, 25(5), 790–798. https://doi.org/10.1016/S1002-0160(15)30060-6

Krishnapillai, M. V., Young-Uhk, S., Friday, J. B., & Haase, D. L. (2020). Locally produced cocopeat growing media for container plant production. Tree Planters’ Notes, 63(1), 29–38. Retrieved from https://rngr.net/publications/tpn/63-1/locally-produced-cocopeat-growing-media-for-container-plant-production

Kumar, K., & Goh, K. M. (1999). Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Advances in agronomy, 68, 197–319. https://doi.org/10.1016/S0065-2113(08)60846-9

Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3–4), 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012

Lehmann, J., da Silva, J. P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant and Soil, 249(2), 343–357. https://doi.org/10.1023/A:1022833116184

Lehmann, J., & Joseph, S. (2024). Biochar for environmental management: science, technology and implementation. Taylor & Francis. Retrieved from https://books.google.co.id/books?hl=en&lr=&id=e34IEQAAQBAJ&oi=fnd&pg=PR9&dq=Biochar+for+environmental+management:+an+introduction.+In:+Biochar+for+environmental+management&ots=ujXr3gpgW5&sig=aIv240TnMxp6dg7WdbOIqyNVPmA&redir_esc=y#v=onepage&q&f=false

Liyanage, M. de S., Jayasekara, K. S., & Fernandopoulle, M. N. (1993). Effects of application of coconut husk and coir dust on the yield of coconut. Cocos, 9, 15–22. Retrieved from https://cocos.sljol.info/articles/2125/files/submission/proof/2125-1-7572-1-10-20100727.pdf

Loh, S. K. (2017). The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Conversion and Management, 141, 285–298. https://doi.org/10.1016/j.enconman.2016.08.081

Londra, P., Paraskevopoulou, A., & Psychogiou, M. (2018). Hydrological behavior of peat-and coir-based substrates and their effect on begonia growth. Water, 10(6), 722. https://doi.org/10.3390/w10060722

Lou, K., Rajapaksha, A. U., Ok, Y. S., & Chang, S. X. (2016). Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions. Chemical Speciation & Bioavailability, 28(1–4), 42–50. https://doi.org/10.1080/09542299.2016.1165080

Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333(1), 117–128. https://doi.org/10.1007/s11104-010-0327-0

Marcovecchio, J. E., Botté, S. E., & Freije, R. H. (2007). Heavy metals, major metals, trace elements. Handbook of water analysis (pp. 289–326). CRC Press. Retrieved from https://www.taylorfrancis.com/chapters/edit/10.1201/9781420006315-15/heavy-metals-major-metals-trace-elements-jorge-marcovecchio-sandra-botte%C2%B4-rube%C2%B4n-freije

Mohammed, M., Salmiaton, A., Wan Azlina, W., Mohammad Amran, M., & Fakhru’l-Razi, A. (2011). Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor. Energy Conversion and Management, 52(2), 1555–1561. https://doi.org/10.1016/j.enconman.2010.10.023

Mohsenin, N. N. (1986). Physical properties of plant and animal materials (2nd ed.). Gordon and Breach Science Publishers. Retrieved from https://scholar.google.co.id/scholar?cluster=2271557061628755538&hl=id&as_sdt=2005&sciodt=0,5

Nagaraj, D. M., Chandrappa, M. N., Kavita, K., Reddy, G. V. G., & Gouda, V. R. (2017). Evaluation of different soilless media for bell pepper (Capsicum annuum Var. Grossum) under protected cultivation. The Bioscan, 12(3), 1367–1370. https://doi.org/10.5380/bio.scan.2017.12.3.255

Njoku, C., & Mbah, C. N. (2012). Effect of burnt and unburnt rice husk dust on maize yield and soil physico-chemical properties of an ultisol in Nigeria. Biological Agriculture & Horticulture, 28(1), 49–60. https://doi.org/10.1080/01448765.2012.664374

Noguera, P., Abad, M., Puchades, R., Maquieira, A., & Noguera, V. (2003). Influence of particle size on physical and chemical properties of coconut coir dust as container medium. Communications in Soil Science and Plant Analysis, 34(3–4), 593–605. https://doi.org/10.1081/CSS-120017842

Novak, J. M., Johnson, M. G., & Spokas, K. A. (2018). Concentration and release of phosphorus and potassium from lignocellulosic- and manure-based biochars for fertilizer reuse. Frontiers in Sustainable Food Systems, 2, 398552. https://doi.org/10.3389/fsufs.2018.00054

Oagile, O., Gabolemogwe, P., Matsuane, C., & Mathowa, T. (2016). Effect of container size on the growth and development of tomato seedlings. International Journal of Current Microbiology and Applied Sciences, 5(4), 890–896. http://dx.doi.org/10.20546/ijcmas.2016.504.100

Ogeleka, D. F., Nmai, O. O., Okieimen, F. E., & Ekakitie, A. (2017). Consideration of the levels exchangeable cations and selected anions in soils of Ethiope River Plain. International Journal of Scientific Research in Agricultural Sciences, 4(1), 1–8. http://dx.doi.org/10.12983/ijsras-2017-p0001-0008

Oluwole, O. I., & Oluwaseun, K. L. (2017). Mechanical, abrasion, and water absorption characteristics of coconut shell ash and charcoal-based polyester composites. West Indian Journal of Engineering, 39(2), 65–71. Retrieved from https://journals.sta.uwi.edu/ojs/index.php/wije/article/view/7733

Olympios, C. M. (1992). Soilless media under protected cultivation: Rockwool, peat, perlite and other substrates. Symposium on Soil and Soilless Media under Protected Cultivation in Mild Winter Climates (pp. 215–234). https://doi.org/10.17660/ActaHortic.1993.323.20

Orji, U. E. N., & Obasi, S. N. (2012). Properties and classification of erosion-prone soils of Ukpor, Nnewi South L.G.A, Anambra State, Nigeria. International Journal of Agricultural and Rural Development, 15(2), 1079–1084. Retrieved from https://scholar.google.co.id/scholar?cluster=1931609183775870960&hl=id&as_sdt=2005&sciodt=0,5

Oshins, C., Michel, F., Louis, P., Richard, T. L., & Rynk, R. (2022). The composting process. In The composting handbook (pp. 51–101). Academic Press. https://doi.org/10.1016/B978-0-323-85602-7.00008-X

Piash, M. I., Hossain, M. F., & Parveen, Z. (2016). Physico-chemical properties and nutrient content of some slow pyrolysis biochars produced from different feedstocks. Bangladesh Journal of Scientific Research, 29(2), 111–122. https://doi.org/10.3329/bjsr.v29i2.32327

Plaimart, J., Acharya, K., Mrozik, W., Davenport, R. J., Vinitnantharat, S., & Werner, D. (2021). Coconut husk biochar amendment enhances nutrient retention by suppressing nitrification in agricultural soil following anaerobic digestate application. Environmental Pollution, 268, 115684. https://doi.org/10.1016/j.envpol.2020.115684

Pope, L. R., & Ward, C. W. (1998). Manual on test sieving methods. Guidelines for establishing sieve analysis procedures. ASTM Manual Series: MNL32. American Society for Testing and Materials. Retrieved from https://scholar.google.co.id/scholar?cites=3921021570142384816&as_sdt=2005&sciodt=0,5&hl=id

Raviv, M., Lieth, J. H., & Bar-Tal, A. (2008). Significance of soilless culture in agriculture. Soilless Culture: Theory and Practice, 1–11. https://doi.org/10.1016/B978-0-444-63696-6.00001-3

Rayment, G. E., & Higginson, F. R. (1992). Electrical conductivity. Australian Laboratory Handbook of Soil and Water Chemical Methods. Inkata Press: Melbourne. Retrieved from https://scholar.google.co.id/scholar?cluster=14306803030058152651&hl=id&as_sdt=2005&sciodt=0,5

Richards, L. A. (1948). Porous plate apparatus for measuring moisture retention and transmission by soil. Soil Science, 66(2), 105–110. Retrieved from https://journals.lww.com/soilsci/citation/1948/08000/porous_plate_apparatus_for_measuring_moisture.3.aspx

Römheld, V., & Marschner, H. (1991). Function of micronutrients in plants. Micronutrients in agriculture, 4, 297–328. https://doi.org/10.2136/sssabookser4.2ed.c9

Ruehlmann, J., & Körschens, M. (2009). Calculating the effect of soil organic matter concentration on soil bulk density. Soil Science Society of America Journal, 73(3), 876–885. https://doi.org/10.2136/sssaj2007.0149

Rühlmann, J., Körschens, M., & Graefe, J. (2006). A new approach to calculate the particle density of soils considering properties of the soil organic matter and the mineral matrix. Geoderma, 130(3–4), 272–283. https://doi.org/10.1016/j.geoderma.2005.01.024

Sarkar, M., Rahman, M., Uddain, J., Quamruzzaman, M., Azad, M., Kalam, O., Islam, M., Rahman, M.S., Choi, K.Y., & Naznin, M.T. (2021). Estimation of yield, photosynthetic rate, biochemical, and nutritional content of red leaf lettuce (Lactuca sativa L.) grown in organic substrates. Plants, 10(6), 1220. https://doi.org/10.3390/plants10061220

Satheesh, M., Pugazhvadivu, M., Prabu, B., Gunasegaran, V., & Manikandan, A. (2019). Synthesis and characterization of coconut shell ash. Journal of Nanoscience and Nanotechnology, 19(7), 4123–4128. https://doi.org/10.1166/jnn.2019.16299

Scott, R. M. (2006). Exchangeable bases of mature, well-drained soils in relation to rainfall in East Africa. Journal of Soil Science, 13(1), 1–9. https://doi.org/10.1111/j.1365-2389.1962.tb00674.x

Sherin, A. S., Geetha, D., & Poornima, Y. (2004). Sustainable production of coconut through biomass recycling. Indian Coconut Journal, 35(1), 16–17. https://doi.org/10.13140/RG.2.1.3219.1200

Spehia, R. S., Singh, S. K., Devi, M., Chauhan, N., Singh, S., Sharma, D., & Sharma, J.C. (2019). Standardization of growing media and its effects on nutrient uptake. Annals of Agri-Bio Research, 24(1), 71–75. Retrieved from https://agribiop.com/standardization-of-growing-media-and-its-effects-on-nutrient-uptake-in-tomato-solanum-lycopersicum-l-under-protected-conditions/

Spomer, L. A. (1979). Three simple demonstrations of the physical effects of soil amendment. HortScience, 14(1), 75–77. https://doi.org/10.21273/HORTSCI.14.1.75

Srinivasarao, C. H., Benzioni, A., Eshel, A., & Waisel, Y. (2004). Effects of salinity on root morphology and nutrient acquisition by faba beans (Vicia faba L.). Journal of the Indian Society of Soil Science, 52(2), 184–191. Retrieved from https://www.indianjournals.com/ijor.aspx?target=ijor:jisss&volume=52&issue=2&article=012

Subramanian, P., Dhanapal, P., Palaniswami, C., & Sebastian, J. (2006). Moisture conservation techniques and intercropping of hybrid Bajra Napier Co3 grass in coconut under coastal sandy soil. Indian Coconut Journal, 37, 10–12. https://doi.org/10.13140/RG.2.1.4247.0407

Sumner, M. E., & Davidtz, J. C. (1965). Positive and negative charges in some Natal soils. South African Journal of Agricultural Sciences, 8(4), 1045–1050. Retrieved from https://journals.co.za/doi/abs/10.10520/AJA05858860_406

Suryaningtyas, D. T., Widjaja, H., Oktariani, P., & Kasih, M. (2024). Response of corn growth to ZeomicAgro, a zeolite-based soil ameliorant. IOP Conference Series: Earth and Environmental Science, 1359(1), 012106. IOP Publishing. https://doi.org/10.1088/1755-1315/1359/1/012106

Syamsiyah, J., Herawati, A., Herdiansyah, G., & Damayanti, A. S. (2024). Micro and macronutrient availability for rice growth on sandy soil with application of azolla microphylla and poultry manure. AgriHealth: Journal of Agri-food, Nutrition and Public Health, 5(2), 114-121. https://dx.doi.org/10.20961/agrihealth.v5i2.90857

Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058

Thien, S. J., & Graveel, J. G. (2003). Laboratory manual for soil science: Agricultural & environmental principles. McGraw-Hill. https://doi.org/10.1002/jpln.200700245

Tripetchkul, S., Pundee, K., Koonsrisuk, S., & Akeprathumchai, S. (2012). Co-composting of coir pith and cow manure: Initial C/N ratio vs physico-chemical changes. International Journal of Recycling of Organic Waste in Agriculture, 1, 15. https://doi.org/10.1186/2251-7715-1-15

Ullah, I., Hanping, M., Chuan, Z., Javed, Q., & Azeem, A. (2017). Optimization of irrigation and nutrient concentration based on economic returns, substrate salt accumulation, and water use efficiency for tomato in greenhouse. Archives of Agronomy and Soil Science, 63(12), 1748–1762. https://doi.org/10.1080/03650340.2017.1306641

Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003

Wang, Z., Zong, H., Zheng, H., Liu, G., Chen, L., & Xing, B. (2015). Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere, 138, 576–583. https://doi.org/10.1016/j.chemosphere.2015.06.084

Wira, A. B., Razi, I. M., & Jamil, Z. A. (2011). Composts as additives in coconut coir dust culture for growing rockmelon (Cucumis melo L.). Journal of Tropical Agriculture and Food Science, 39(2), 229–237. https://doi.org/10.11121/ijocta.01.2015.00225

Wösten, J. H. M., Pachepsky, Y. A., & Rawls, W. J. (2001). Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic parameters. Geoderma, 99(3–4), 197–211. https://doi.org/10.1016/S0022-1694(01)00464-4

Zhao, Y., Hao, Y., Cheng, K., Wang, L., Dong, W., Liu, Z., & Yang, F. (2024). Artificial humic acid mediated migration of phosphorus in soil: Experiment and modelling. Catena, 238, 107896. https://doi.org/10.1016/j.catena.2024.107896

Refbacks

  • There are currently no refbacks.