A Study of Acclimatization Media on Strawberry (Fragaria x ananassa Duch.) Plantlets Produced from Meristem Culture

Rindang Dwiyani, Yuyun Fitriani, Francis Geren Sta Ana, Putu Oki Bimantara

Abstract

Acclimatization is the final stage of propagation by in vitro culture. This phase is crucial in micropropagation, as it will determine the survival of plantlets outside culture jars. This phase’s efforts should ensure optimal conditions, including the media type. This study sought the best media for acclimating strawberry plantlets produced under meristem culture. The research employed the randomized block design, utilizing 7 various media treatments, which include husk charcoal; perlite; cocopeat; perlite + husk charcoal; soil + sand; husk charcoal + cocopeat; and perlite + cocopeat. The media mix was set at 1:1 a ratio (weight/weight), with 9 replicates. The chemical properties of the media were then analyzed, including several parameters such as organic C, total N, and water content. Several parameters were observed for plantlet’s growth parameters, including plant survival rates, number of leaves per plant, average leaf area, and root fresh weight. The results found that cocopeat was the best medium for acclimating strawberry plantlets. In cocopeat media, the plant survival rate reached 96.68%, with the leaves number of 7.67 plant-1, an average leaf area of 120.92 cm2 plant-1, and root fresh weight of 4.30 g plant-1. These results indicate that cocopeat is a medium derived from coconut fiber powder, a natural resource that can be renewed sustainably and produces better plant plantlet growth.

Keywords

acclimatization; cocopeat; meristem culture; rooting; survival rate

Full Text:

PDF

References

Ab Rahman, N. A., Abdul Latif, N., Udin E. Z., Awal, A., & Shamsiah, A. (2020). In vitro regeneration and acclimatization of pineapple (Ananas comosus L. Merr. var. MD2). Food Research, 4(Suppl. 5), 164–172. https://doi.org/10.26656/fr.2017.4(S5).010

Awang, Y., Shaharom, A. S., Mohamad, R. B., & Selamat, A. (2009). Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. American Journal of Agricultural and Biological Sciences, 4(1), 63–71. https://doi.org/10.3844/ajabssp.2009.63.71

Bharati, K., Prasad, M., Mir, H., & Pal, A. K. (2018). In vitro regeneration and acclimatisation of banana cv. Malbhog. Current Journal of Applied Science and Technology, 31(4), 1–6. https://doi.org/10.9734/CJAST/2018/45985

Boliani, A. C., Ferreira, A. F. A., Monteiro, L. N. H., Silva, M. S. A. C. D., & Rombola, A. D. (2019). Advances in propagation of Ficus carica L. Revista Brasileira de Fruticultura, 41, e-026. http://dx.doi.org/10.1590/0100-29452019026

da Silva, J. A. T., Hossain, M. M., Sharma, M., Dobránszki, J., Cardoso, J. C., & Songjun, Z. E. N. G. (2017). Acclimatization of in vitro-derived Dendrobium. Horticultural Plant Journal, 3(3), 110–124. https://doi.org/10.1016/j.hpj.2017.07.009

Díaz, L. P., Namur, J. J., Bollati, S. A., & Arce, O. E. A. (2010). Acclimatization of Phalaenopsis and Cattleya obtained by micropropagation. Revista Colombiana de Biotecnología, 12(2), 27–40. Retrieved from https://www.researchgate.net/profile/Osvaldo-Arce-2/publication/49616333_Acclimatization_of_Phalaenopsis_and_Cattleya_obtained_by_micropropagation/links/0fcfd508eb39a9466b000000/Acclimatization-of-Phalaenopsis-and-Cattleya-obtained-by-micropropagation.pdf

Dwiyani, R., Fitriani, Y., & Mercuriani, I. (2022). The alternative media supporting the protocorm and plantlet growth of the Indonesian black orchid (Coelogyne pandurata Lindl.) grown in vitro. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 152–160. http://dx.doi.org/10.20961/carakatani.v37i1.55956

Dwiyani, R., Yuswanti, H., Mayadewi, N. N. A., Fitriani, Y., Mega, I. M., & Kartini, N. L. (2020). Runner-tip culture of strawberry (Fragaria x ananassa Duch) grown on several shoot-induction medium. International Journal of Biosciences and Biotechnology, 8(1), 10–18. https://doi.org/10.24843/IJBB.2020.v08.i01.p02

Ehirim, B. O., Ishaq, M. N., Agboire, S., Solomon, C., Ejizu, A. N., & Diarra, A. (2014). Acclimatization: An important stage in tissue culture. Asian American Plant Science Research Journal, 1(1), 1–7. https://doi.org/10.13140/RG.2.2.15272.47369

Hariyanto, S., Jamil, A. R., & Purnobasuki, H. (2019). Effects of plant media and fertilization on the growth of orchid plant (Dendrobium sylvanum rchb. F.) in acclimatization phase. Planta Tropika: Jurnal Agrosains (Journal of Agro Science), 7(1), 67–72. https://doi.org/10.18196/pt.2019.095.66-72

Hazarika, B. N., Teixeira da Silva, J. A., & Talukdar, A. (2006). Effective acclimatization of in vitro cultured plants: Methods, physiology and genetics. Floriculture, Ornamental and Plant Biotechnology, 2, 427–438. Retrieved from https://www.researchgate.net/publication/283300426_Effective_Acclimatization_of_in_Vitro_Cultured_Plants_Methods_Physiology_and_Genetics

Hernaningsih. (2010). Deskripsi dan komposisi buah stroberi. Semarang: Universitas Diponegoro.

Hoang, N. N., Kitaya, Y., Shibuya, T., & Endo, R. (2020). Effects of supporting materials in in vitro acclimatization stage on ex vitro growth of wasabi plants. Scientia Horticulturae, 261, 109042. https://doi.org/10.1016/j.scienta.2019.109042

Jofre-Garfias, A. E., Vazquez-Sanchez, M. N., Hernandez-Razo, A. R., & Davalos-Gonzalez, P. A. (2005). Production and acclimatization of in vitro produced strawberry plants. X International Symposium on Plant Bioregulators in Fruit Production, 727, 67–72. https://doi.org/10.17660/ActaHortic.2006.727.5

Khan, M. Z., Era, M. D., Islam, M. A., Khatun, R., Begum, A., & Billah, S. M. (2019). Effect of coconut peat on the growth and yield response of Ipomoea aquatica. American Journal of Plant Sciences, 10(03), 369. https://doi.org/10.4236/ajps.2019.103027

Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., ... & Kögel-Knabner, I. (2020). Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 13(8), 529–534. https://doi.org/10.1038/s41561-020-0612-3

Miri, S. M. (2020). Micropropagation, callus induction and regeneration of ginger (Zingiber officinale Rosc.). Open agriculture, 5(1), 75–84. https://doi.org/10.1515/opag-2020-0008

Neri, J. C., Meléndez-Mori, J. B., Tejada-Alvarado, J. J., Vilca-Valqui, N. C., Huaman-Huaman, E., Oliva, M., & Goñas, M. (2022). An optimized protocol for micropropagation and acclimatization of strawberry (Fragaria× ananassa Duch.) variety ‘Aroma’. Agronomy, 12(4), 968. https://doi.org/10.3390/agronomy12040968

Park, S. (2021). Meristem culture for virus-free plants. Plant Tissue Culture-Techniques and Experiments, fourth edition (pp. 129–136). Cambridge Massachusetts: Academic Press. https://doi.org/10.1016/B978-0-12-821120-5.00007-9

Polivanova, O. B., & Bedarev, V. A. (2022). Hyperhydricity in plant tissue culture. Plants, 11(23), 3313. https://doi.org/10.3390/plants11233313

Prabhuling, G., & Huchesh, H. (2018). Direct in vitro regeneration in fig (Ficus carcia L.) cv.‘Brown Turkey’. Research Journal of Biotechnology, 13(5), 77–83. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3080730

Purmadewi, G. C., Wulandari, A. S., & Sianturi, R. U. D. (2019). The effect of rooting and acclimatization media on the success of acclimatization of Tembesu (Fagraea fragrans (Roxb.) Miq.). Jurnal Perbenihan Tanaman Hutan, 7(1), 1–12. https://doi.org/10.20886/BPTPTH.2019.7.1.1-12

Shatnawi, M. A., Shibli, R. A., Shahrour, W. G., Al-Qudah, T. S., & Abu-Zahra, T. (2019). Micropropagation and conservation of Fig (Ficus carica L.). Journal of Advances Agriculture, 10, 1669–1679. https://doi.org/10.24297/jaa.v10i0.8160

Sriskanda, D., Liew, Y. X., Khor, S. P., Merican, F., Subramaniam, S., & Chew, B. L. (2021). An efficient micropropagation protocol for Ficus carica cv. Golden Orphan suitable for mass propagation. Biocatalysis and Agricultural Biotechnology, 38, 102225. https://doi.org/10.1016/j.bcab.2021.102225

Tamyiz, M., Prayoga, L., Prasetyo, R., Murchie, E., & Sugiyono, S. (2022). Improving agarwood (Aquilaria malaccensis Lamk.) plantlet formation using various types and concentrations of auxins. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 142–151. http://dx.doi.org/10.20961/carakatani.v37i1.58370

Taşkın, H., Baktemur, G., Kurul, M., & Büyükalaca, S. (2013). Use of tissue culture techniques for producing virus‐free plant in garlic and their identification through real‐time PCR. The Scientific World Journal, 2013(1), 781282. http://dx.doi.org/10.1155/2013/781282

Wu, L., Zhang, W., Wei, W., He, Z., Kuzyakov, Y., Bol, R., & Hu, R. (2019). Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biology and Biochemistry, 135, 383–391. https://doi.org/10.1016/j.soilbio.2019.06.003

Xue, B., Huang, L., Huang, Y., Kubar, K. A., Li, X., & Lu, J. (2020). Straw management influences the stabilization of organic carbon by Fe (oxyhydr) oxides in soil aggregates. Geoderma, 358, 113987. https://doi.org/10.1016/j.geoderma.2019.113987

Zhang, X., Xin, X., Zhu, A., Zhang, J., & Yang, W. (2017). Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena, 156, 176–183. https://doi.org/10.1016/j.catena.2017.04.012

Refbacks

  • There are currently no refbacks.