A Study of Acclimatization Media on Strawberry (Fragaria x ananassa Duch.) Plantlets Produced from Meristem Culture
Abstract
Keywords
Full Text:
PDFReferences
Ab Rahman, N. A., Abdul Latif, N., Udin E. Z., Awal, A., & Shamsiah, A. (2020). In vitro regeneration and acclimatization of pineapple (Ananas comosus L. Merr. var. MD2). Food Research, 4(Suppl. 5), 164–172. https://doi.org/10.26656/fr.2017.4(S5).010
Awang, Y., Shaharom, A. S., Mohamad, R. B., & Selamat, A. (2009). Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. American Journal of Agricultural and Biological Sciences, 4(1), 63–71. https://doi.org/10.3844/ajabssp.2009.63.71
Bharati, K., Prasad, M., Mir, H., & Pal, A. K. (2018). In vitro regeneration and acclimatisation of banana cv. Malbhog. Current Journal of Applied Science and Technology, 31(4), 1–6. https://doi.org/10.9734/CJAST/2018/45985
Boliani, A. C., Ferreira, A. F. A., Monteiro, L. N. H., Silva, M. S. A. C. D., & Rombola, A. D. (2019). Advances in propagation of Ficus carica L. Revista Brasileira de Fruticultura, 41, e-026. http://dx.doi.org/10.1590/0100-29452019026
da Silva, J. A. T., Hossain, M. M., Sharma, M., Dobránszki, J., Cardoso, J. C., & Songjun, Z. E. N. G. (2017). Acclimatization of in vitro-derived Dendrobium. Horticultural Plant Journal, 3(3), 110–124. https://doi.org/10.1016/j.hpj.2017.07.009
Díaz, L. P., Namur, J. J., Bollati, S. A., & Arce, O. E. A. (2010). Acclimatization of Phalaenopsis and Cattleya obtained by micropropagation. Revista Colombiana de Biotecnología, 12(2), 27–40. Retrieved from https://www.researchgate.net/profile/Osvaldo-Arce-2/publication/49616333_Acclimatization_of_Phalaenopsis_and_Cattleya_obtained_by_micropropagation/links/0fcfd508eb39a9466b000000/Acclimatization-of-Phalaenopsis-and-Cattleya-obtained-by-micropropagation.pdf
Dwiyani, R., Fitriani, Y., & Mercuriani, I. (2022). The alternative media supporting the protocorm and plantlet growth of the Indonesian black orchid (Coelogyne pandurata Lindl.) grown in vitro. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 152–160. http://dx.doi.org/10.20961/carakatani.v37i1.55956
Dwiyani, R., Yuswanti, H., Mayadewi, N. N. A., Fitriani, Y., Mega, I. M., & Kartini, N. L. (2020). Runner-tip culture of strawberry (Fragaria x ananassa Duch) grown on several shoot-induction medium. International Journal of Biosciences and Biotechnology, 8(1), 10–18. https://doi.org/10.24843/IJBB.2020.v08.i01.p02
Ehirim, B. O., Ishaq, M. N., Agboire, S., Solomon, C., Ejizu, A. N., & Diarra, A. (2014). Acclimatization: An important stage in tissue culture. Asian American Plant Science Research Journal, 1(1), 1–7. https://doi.org/10.13140/RG.2.2.15272.47369
Hariyanto, S., Jamil, A. R., & Purnobasuki, H. (2019). Effects of plant media and fertilization on the growth of orchid plant (Dendrobium sylvanum rchb. F.) in acclimatization phase. Planta Tropika: Jurnal Agrosains (Journal of Agro Science), 7(1), 67–72. https://doi.org/10.18196/pt.2019.095.66-72
Hazarika, B. N., Teixeira da Silva, J. A., & Talukdar, A. (2006). Effective acclimatization of in vitro cultured plants: Methods, physiology and genetics. Floriculture, Ornamental and Plant Biotechnology, 2, 427–438. Retrieved from https://www.researchgate.net/publication/283300426_Effective_Acclimatization_of_in_Vitro_Cultured_Plants_Methods_Physiology_and_Genetics
Hernaningsih. (2010). Deskripsi dan komposisi buah stroberi. Semarang: Universitas Diponegoro.
Hoang, N. N., Kitaya, Y., Shibuya, T., & Endo, R. (2020). Effects of supporting materials in in vitro acclimatization stage on ex vitro growth of wasabi plants. Scientia Horticulturae, 261, 109042. https://doi.org/10.1016/j.scienta.2019.109042
Jofre-Garfias, A. E., Vazquez-Sanchez, M. N., Hernandez-Razo, A. R., & Davalos-Gonzalez, P. A. (2005). Production and acclimatization of in vitro produced strawberry plants. X International Symposium on Plant Bioregulators in Fruit Production, 727, 67–72. https://doi.org/10.17660/ActaHortic.2006.727.5
Khan, M. Z., Era, M. D., Islam, M. A., Khatun, R., Begum, A., & Billah, S. M. (2019). Effect of coconut peat on the growth and yield response of Ipomoea aquatica. American Journal of Plant Sciences, 10(03), 369. https://doi.org/10.4236/ajps.2019.103027
Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., ... & Kögel-Knabner, I. (2020). Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 13(8), 529–534. https://doi.org/10.1038/s41561-020-0612-3
Miri, S. M. (2020). Micropropagation, callus induction and regeneration of ginger (Zingiber officinale Rosc.). Open agriculture, 5(1), 75–84. https://doi.org/10.1515/opag-2020-0008
Neri, J. C., Meléndez-Mori, J. B., Tejada-Alvarado, J. J., Vilca-Valqui, N. C., Huaman-Huaman, E., Oliva, M., & Goñas, M. (2022). An optimized protocol for micropropagation and acclimatization of strawberry (Fragaria× ananassa Duch.) variety ‘Aroma’. Agronomy, 12(4), 968. https://doi.org/10.3390/agronomy12040968
Park, S. (2021). Meristem culture for virus-free plants. Plant Tissue Culture-Techniques and Experiments, fourth edition (pp. 129–136). Cambridge Massachusetts: Academic Press. https://doi.org/10.1016/B978-0-12-821120-5.00007-9
Polivanova, O. B., & Bedarev, V. A. (2022). Hyperhydricity in plant tissue culture. Plants, 11(23), 3313. https://doi.org/10.3390/plants11233313
Prabhuling, G., & Huchesh, H. (2018). Direct in vitro regeneration in fig (Ficus carcia L.) cv.‘Brown Turkey’. Research Journal of Biotechnology, 13(5), 77–83. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3080730
Purmadewi, G. C., Wulandari, A. S., & Sianturi, R. U. D. (2019). The effect of rooting and acclimatization media on the success of acclimatization of Tembesu (Fagraea fragrans (Roxb.) Miq.). Jurnal Perbenihan Tanaman Hutan, 7(1), 1–12. https://doi.org/10.20886/BPTPTH.2019.7.1.1-12
Shatnawi, M. A., Shibli, R. A., Shahrour, W. G., Al-Qudah, T. S., & Abu-Zahra, T. (2019). Micropropagation and conservation of Fig (Ficus carica L.). Journal of Advances Agriculture, 10, 1669–1679. https://doi.org/10.24297/jaa.v10i0.8160
Sriskanda, D., Liew, Y. X., Khor, S. P., Merican, F., Subramaniam, S., & Chew, B. L. (2021). An efficient micropropagation protocol for Ficus carica cv. Golden Orphan suitable for mass propagation. Biocatalysis and Agricultural Biotechnology, 38, 102225. https://doi.org/10.1016/j.bcab.2021.102225
Tamyiz, M., Prayoga, L., Prasetyo, R., Murchie, E., & Sugiyono, S. (2022). Improving agarwood (Aquilaria malaccensis Lamk.) plantlet formation using various types and concentrations of auxins. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 142–151. http://dx.doi.org/10.20961/carakatani.v37i1.58370
Taşkın, H., Baktemur, G., Kurul, M., & Büyükalaca, S. (2013). Use of tissue culture techniques for producing virus‐free plant in garlic and their identification through real‐time PCR. The Scientific World Journal, 2013(1), 781282. http://dx.doi.org/10.1155/2013/781282
Wu, L., Zhang, W., Wei, W., He, Z., Kuzyakov, Y., Bol, R., & Hu, R. (2019). Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biology and Biochemistry, 135, 383–391. https://doi.org/10.1016/j.soilbio.2019.06.003
Xue, B., Huang, L., Huang, Y., Kubar, K. A., Li, X., & Lu, J. (2020). Straw management influences the stabilization of organic carbon by Fe (oxyhydr) oxides in soil aggregates. Geoderma, 358, 113987. https://doi.org/10.1016/j.geoderma.2019.113987
Zhang, X., Xin, X., Zhu, A., Zhang, J., & Yang, W. (2017). Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena, 156, 176–183. https://doi.org/10.1016/j.catena.2017.04.012
Refbacks
- There are currently no refbacks.