Formation of Coconut Oil By–Product Protein Concentrate–Pectin Through Electrostatic Interaction to Improve Emulsifying Properties
Abstract
Keywords
Full Text:
PDFReferences
Albano, K. M., & Nicoletti, V. R. (2018). Ultrasound impact on whey protein concentrate-pectin complexes and in the O/W emulsions with low oil soybean content stabilization. Ultrasonics Sonochemistry, 41, 562–571. https://doi.org/10.1016/j.ultsonch.2017.10.018
Aizawa, H. (2014). Novel pragmatic turbidimetric data analysis method for evaluating the stability of emulsions. International Journal of Food Properties, 17(6), 1264–1274. https://doi.org/10.1080/10942912.2012.685674
Aryee, F. N., & Nickerson, M. T. (2012). Formation of electrostatic complexes involving mixtures of lentil protein isolates and gum Arabic polysaccharides. Food Research International, 48(2), 520–527. https://doi.org/10.1016/j.foodres.2012.05.012
Bengoechea, C., Jones, O. G., Guerrero, A., & McClements, D. J. (2011). Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, 25(5), 1227–1232. https://doi.org/10.1016/j.foodhyd.2010.11.010
Deen, A., Visvanathan, R., Wickramarachchi, D., Marikkar, N., Nammi, S., Jayawardana, B. C., & Liyanage, R. (2021). Chemical composition and health benefits of coconut oil: An overview. Journal of the Science of Food and Agriculture, 101(6), 2182–2193. https://doi.org/10.1002/jsfa.10870
Dickinson, E. (1998). Stability and rheological implications of electrostatic milk protein–polysaccharide interactions. Trends in Food Science & Technology, 9(10), 347–354. https://doi.org/10.1016/S0924-2244(98)00057-0
Euston, S. R., & Hirst, R. L. (1999). Comparison of the concentration-dependent emulsifying properties of protein products containing aggregated and non-aggregated milk protein. International Dairy Journal, 9(10), 693–701. https://doi.org/10.1016/S0958-6946(99)00138-7
Fadhila, T. P. (2019). Optimasi kondisi fosforilasi konsentrat protein blondo menggunakan sodium trimetafosfat (Doctoral dissertation). Yogyakarta: Universitas Gadjah Mada. Retrieved from http://etd.repository.ugm.ac.id/penelitian/detail/178738
Hogg, R. (2013). Bridging flocculation by polymers. KONA Powder and Particle Journal, 30, 3–14. https://doi.org/10.14356/kona.2013005
Ibrahim, N. H., Jin, O. J., Muhamad, N. J., & Ishak, W. R. (2019). Physicochemical properties and stability of Moringa oleifera seed oil-in-water emulsions as affected by different types of polysaccharide and emulsifier. Malaysian Journal of Fundamental and Applied Sciences, 15(2–1), 324–329. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Physicochemical+properties+and+stability+of+Moringa+oleifera+seed+oil-in-water+emulsions+as+affected+by+different+types+of+polysaccharide+and+emulsifier&btnG=
Jones, O., Decker, E. A., & McClements, D. J. (2010). Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids, 24(2–3), 239–248. https://doi.org/10.1016/j.foodhyd.2009.10.001
Jones, O. G., Decker, E. A., & McClements, D. J. (2009). Formation of biopolymer particles by thermal treatment of β-lactoglobulin–pectin complexes. Food Hydrocolloids, 23(5), 1312–1321. https://doi.org/10.1016/j.foodhyd.2008.11.013
Jones, O. G., Lesmes, U., Dubin, P., & McClements, D. J. (2010). Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin–pectin complexes. Food Hydrocolloids, 24(4), 374–383. https://doi.org/10.1016/j.foodhyd.2009.11.003
Jourdain, L., Leser, M. E., Schmitt, C., Michel, M., & Dickinson, E. (2008). Stability of emulsions containing sodium caseinate and dextran sulfate: Relationship to complexation in solution. Food Hydrocolloids, 22(4), 647–659. https://doi.org/10.1016/j.foodhyd.2007.01.007
Kim, H. J., Decker, E. A., & McClements, D. J. (2002). Role of postadsorption conformation changes of β-lactoglobulin on its ability to stabilize oil droplets against flocculation during heating at neutral pH. Langmuir, 18(20), 7577–7583. https://doi.org/10.1021/la020385u
Klassen, D. R., Elmer, C. M., & Nickerson, M. T. (2011). Associative phase separation involving canola protein isolate with both sulphated and carboxylated polysaccharides. Food Chemistry, 126(3), 1094–1101. https://doi.org/10.1016/j.foodchem.2010.11.138
Kori, A. H., Mahesar, S. A., Sherazi, S. T. H., Khatri, U. A., Laghari, Z. H., & Panhwar, T. (2021). Effect of process parameters on emulsion stability and droplet size of pomegranate oil-in-water. Grasas y Aceites, 72(2), e410–e410. https://doi.org/10.3989/gya.0219201
Lan, Y., Chen, B., & Rao, J. (2018). Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids, 80, 245–253. https://doi.org/10.1016/j.foodhyd.2018.02.021
Lima, R. D. S., & Block, J. M. (2019). Coconut oil: What do we really know about it so far?. Food Quality and Safety, 3(2) 61–72. https://doi.org/10.1093/fqsafe/fyz004
Liu, G., & Zhong, Q. (2013). Thermal aggregation properties of whey protein glycated with various saccharides. Food hydrocolloids, 32(1), 87–96. https://doi.org/10.1016/j.foodhyd.2012.12.008
Liu, S., Low, N. H., & Nickerson, M. T. (2009). Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate−gum arabic complexes. Journal of Agricultural and Food Chemistry, 57(4), 1521–1526. https://doi.org/10.1021/jf802643n
Naik, A., Raghavendra, S. N., & Raghavarao, K. S. M. S. (2012). Production of coconut protein powder from coconut wet processing waste and its characterization. Applied biochemistry and biotechnology, 167, 1290–1302. https://doi.org/10.1007/s12010-012-9632-9
Oduse, K., Campbell, L., Lonchamp, J., & Euston, S. R. (2017). Electrostatic complexes of whey protein and pectin as foaming and emulsifying agents. International journal of food properties, 20(sup3), S3027–S3041. https://doi.org/10.1080/10942912.2017.1396478
Onsaard, E., Vittayanont, M., Srigam, S., & McClements, D. J. (2006). Comparison of properties of oil-in-water emulsions stabilized by coconut cream proteins with those stabilized by whey protein isolate. Food Research International, 39(1), 78–86. https://doi.org/10.1016/j.foodres.2005.06.003
Patil, U., & Benjakul, S. (2017). Characteristics of albumin and globulin from coconut meat and their role in emulsion stability without and with proteolysis. Food hydrocolloids, 69, 220–8228. https://doi.org/10.1016/j.foodhyd.2017.02.006
Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of agricultural and food chemistry, 26(3), 716–723. https://doi.org/10.1021/jf60217a041
Permatasari, S., Hastuti, P., Setiaji, B., & Hidayat, C. (2015). Functional properties of protein isolates of blondo (coconut presscake) from side products of separation of virgin coconut oil by various methods. Agritech-Jurnal Teknologi Pertanian, 35(4), 441–448. https://doi.org/10.22146/agritech.9328
Salminen, H., & Weiss, J. (2014). Electrostatic adsorption and stability of whey protein–pectin complexes on emulsion interfaces. Food Hydrocolloids, 35, 410–419. https://doi.org/10.1016/j.foodhyd.2013.06.020
Salminen, H., & Weiss, J. (2014). Effect of pectin type on association and pH stability of whey protein-pectin complexes. Food biophysics, 9, 29–38. https://doi.org/10.1007/s11483-013-9314-3
Semenova, M. (2017). Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid & Interface Science, 28, 15–21. https://doi.org/10.1016/j.cocis.2016.12.003
Setiowati, A. D., Saeedi, S., Wijaya, W., & Van der Meeren, P. (2017). Improved heat stability of whey protein isolate stabilized emulsions via dry heat treatment of WPI and low methoxyl pectin: Effect of pectin concentration, pH, and ionic strength. Food Hydrocolloids, 63, 716–726. https://doi.org/10.1016/j.foodhyd.2016.10.025
Temthawee, W., Panya, A., Cadwallader, K. R., & Suppavorasatit, I. (2020). Flavor binding property of coconut protein affected by protein-glutaminase: Vanillin-coconut protein model. LWT, 130, 109676. https://doi.org/10.1016/j.lwt.2020.109676
Thaiphanit, S., & Anprung, P. (2016). Physicochemical and emulsion properties of edible protein concentrate from coconut (Cocos nucifera L.) processing by-products and the influence of heat treatment. Food Hydrocolloids, 52, 756–765. https://doi.org/10.1016/j.foodhyd.2015.08.017
Wagoner, T. B., & Foegeding, E. A. (2017). Whey protein–pectin soluble complexes for beverage applications. Food Hydrocolloids, 63, 130–138. https://doi.org/10.1016/j.foodhyd.2016.08.027
Refbacks
- There are currently no refbacks.