Uji Kualitas Produk Pupuk Organik Beragensia Hayati

Mujiyo Mujiyo, Aktavia Herawati, Ganjar Herdiansyah, Suntoro Suntoro, Jauhari Syamsiyah, Widyatmani Sih Dewi, Hery Widijanto, Rahayu Rahayu, Sutarno Sutarno

Abstract

Processing cow dung into organic fertilizer with additional biological agents is an effort to prevent environmental pollution due to agricultural waste. Sources of organic fertilizer materials have different nutrient content. Good quality organic fertilizer means that it has match the Organic Fertilizer Standards based on the Decree of Agriculture Minister Republic Indonesia Number 261/KPTS/SR.310/M/4/2019. This activity aims to determine the quality of the bio-agent organic fertilizer product produced by Perkumpulan Pertanian Organik Wonoagung Wonogiri (PPOWW) by analyzing its nutrient content. The activities carried out include an initial survey of partner conditions, preparation of materials, and analysis of fertilizers. The results show that the PPOWW management understands the mechanism of standard and how to carry out quality control on the organic fertilizers produced. The results of the analysis of the nutrient content of PPOWW organic fertilizer products are N-total 1.32%, P2O5 1.50%, K2O 2.24%, C-organic 23.09%, C/N ratio 17.55 and pH 8.27 which have met the quality standards of organic fertilizers and biological fertilizers. The addition of biological agents in the process of making organic fertilizers is proven to improve the quality of fertilizers.

Keywords

agensia hayati; pupuk organik; standar baku; uji kualitas; biological agents; organic fertilizers; quality control; standarts

Full Text:

PDF

References

Adediran, J. A., Taiwo, L. B., Akande, M. O., Sobulo, R. A., & Idowu, O. J. (2005). Application of organic and inorganic fertilizer for sustainable maize and cowpea yields in Nigeria. Journal of Plant Nutrition, 27(7), 1163–1181. https://doi.org/10.1081/PLN-120038542

Ajwa, H. A., & Tabatabai, M. A. (1994). Decomposition of different organic materials in soils. Biology and Fertility of Soils, 18(3), 175–182. https://doi.org/10.1007/BF00647664

Buckman, H. O., & Brady, N. C. (1969). The nature and properties of soils (No. 116). New York: Macmillan. Tersedia dari https://books.google.co.id/books/about/The_Nature_and_Properties_of_Soils.html?id=S2tRAAAAMAAJ&redir_esc=y

Chan. M. T., Selvam. A., & Wong. J. W. C. (2016). Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment. Bioresource Technology, 200, 838–844. http://dx.doi.org/10.1016/j.biortech.2015.10.093

Cozzolino, V., Di Meo, V., & Piccolo, A. (2013). Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. Journal of Geochemical Exploration, 129, 40–44. https://doi.org/10.1016/j.gexplo.2013.02.006

Eviati & Sulaeman. (2009). Analisis kimia tanah, tanaman, air, dan pupuk. Petunjuk Teknis Edisi 2. Bogor: Balai Penelitian Tanah. Tersedia dari https://balittanah.litbang.pertanian.go.id/ind/dokumentasi/juknis/juknis_kimia2.pdf

Ferdous, Z., Zulfiqar, F., Datta, A., Hasan, A. K., & Sarker, A. (2021). Potential and challenges of organic agriculture in Bangladesh: a review. Journal of Crop Improvement, 35(3), 403–426. https://doi.org/10.1080/15427528.2020.1824951

Howarth, R. B. (2001). Intertemporal social choice and climate stabilization. International Journal of Environment and Pollution, 15(4), 386–405. Tersedia dari http://www.inderscience.com/offer.php?id=4830

Ishak, S. Y., Bahua, M. I., & Limonu, M. (2013). Pengaruh pupuk organik kotoran ayam terhadap pertumbuhan tanaman jagung (Zea mays L.) di Dulomo Utara Kota Gorontalo. JATT, 2(1), 210–218. Tersedia dari https://repository.ung.ac.id/get/karyailmiah/558/Pengaruh-Pupuk-Organik-Kotoran-Ayam-terhadap-Pertumbuhan-Tanaman-Jagung-Zea-mays-L-di-Dulomo-Utara-Kota-Gorontalo.pdf

Isroi & Yuliarti, N. (2009). Kompos cara mudah, murah, dan cepat menghasilkan kompos. Yogyakarta: Andi. Tersedia dari https://scholar.google.co.id/scholar?hl=en&as_sdt=0%2C5&q=Kompos+Cara+Mudah%2C+Murah%2C+dan+Cepat+Menghasilkan+Kompos&btnG=

Jarecki, M., Grant, B., Smith, W., Deen, B., Drury, C., VanderZaag, A., Qian, B., Yang, J., & Wagner-Riddle, C. (2020). Long-term trends in corn yields and soil carbon under diversified crop rotations. Journal of Environmental Quality, 47(4), 635–643. https://doi.org/10.2134/jeq2017.08.0317

Marchand, S., & Guo, H.. (2014). The environmental efficiency of non-certified organic farming in China: A case study of paddy rice production. China Economic Review, 31, 201–216. https://doi.org/10.1016/j.chieco.2014.09.006

Kementerian Pertanian. (2019). Persyaratan teknis minimal pupuk organik, pupuk hayati, dan pembenah tanah. Keputusan Nomor 261/KPTS/SR.310/M/4/2019. Jakarta: Kementerian Pertanian

Mori, A., & Hojito, M. (2015). Effect of dairy manure type on the carbon balance of mowed grassland in Nasu, Japan: comparison between manure slurry plus synthetic fertilizer plots and farmyard manure plus synthetic fertilizer plots. Soil Science and Plant Nutrition, 61(4), 736–746. https://doi.org/10.1080/00380768.2015.1043642

Mujiyo, Sumarno, Suryono, Hasanah K, Suminah, & Sunarminto, B. H. 2018. Pembuatan pupuk organik sebagai wujud integrasi ternak-tanaman dalam pemberdayaan masyarakat. Prosiding Konferensi Nasional Pengabdian Kepada Masyarakat dan Corporate Social Responsibility (PKM-CSR), 1, 308–316. Tersedia dari http://www.prosiding-pkmcsr.org/index.php/pkmcsr/article/view/200

na Mona, B. (2003). Compost testing and analysis service interpretation of results, available from Bord na Mona. Newbridge, Co. Kildare: Bord Na Mona. Tersedia dari https://goctech.com/wp-content/uploads/2016/11/Bord-na-Mona-Paper.pdf

Naresh, R. K., Ghosh, A., Kumar, V., Gupta, R. K., Singh, S. P., Purushottam, Kumar, V., Tyagi, S., Singh, V., Mahajan, N. C., Kumar, A., & Singh, O. (2017). Tillage crop establishment and organic inputs with kappaphycus-sap effect on soil organic carbon fractions and water footprints under a six year rice-wheat rotation. International Journal of Current Research and Academic Review, 5(5), 57–69. http://dx.doi.org/10.20546/ijcrar.2017.505.008

Parvage, M. M., Ulén, B., Eriksson, J., Strock, J., & Kirchmann, H. (2013). Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils, 49(2), 245–250. https://doi.org/10.1007/s00374-012-0746-6

Pettigrew, W. T. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia plantarum, 133(4), 670–681. https://doi.org/10.1111/j.1399-3054.2008.01073.x

Prihantini, N. B., Putri, B., & Yuniati, R. (2005). Pertumbuhan Chlorella Spp. dalam medium ekstrak tauge (MET) dengan variasi pH awal. Makara Journal of Sains, 9(1), 1–6. https://doi/org/10.7454/mss.v9i1.457

Qiu, S., Xie, J., Zhao, S., Xu, X., Hou, Y., Wang, X., Zhou, W., He, P., Johnston, A. M., Christie, P., & Jin, J. (2014). Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research, 163, 1–9. https://doi.org/10.1016/j.fcr.2014.04.016

Sanyal, S. K., Dwivedi, B. S., Singh, V. K., Majumdar, K., Datta, S. C., Pattanayak, S. K., & Annapurna, K. 2015. Phosphorus in relation to dominant cropping sequences in India: chemistry, fertility relations and management options. Current Science, 108(7), 1262–1270. Tersedia dari https://www.jstor.org/stable/24905487

Srinivasarao, C., Kundu, S., Ramachandrappa, B. K., Reddy, S., Lal, R., Venkateswarlu, B., Sahrawat, K. L., & Naik, R. P. (2014). Potassium release characteristics, potassium balance, and fingermillet (Eleusine coracana G.) yield sustainability in a 27-year long experiment on an Alfisol in the semi-arid tropical India. Plant and soil, 374(1), 315–330. https://doi.org/10.1007/s11104-013-1877-8

Wang, K., Yin, X., Mao, H., Chu, C., & Tian, Y. (2018). Changes in structure and function of fungal community in cow manure composting. Bioresource technology, 255, 123–130. https://doi.org/10.1016/j.biortech.2018.01.064

Wang, X., Cui, H., Shi, J., Zhao, X., Zhao, Y., & Wei, Z. (2015). Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Bioresource technology, 198, 395–402. https://doi.org/10.1016/j.biortech.2015.09.041

Wulandari, S., & Wahyudi, A. (2014). Manajemen resiko dalam pengembangan pertanian di Indonesia. Prosiding Seminar Nasional Pertanian Organik. Bogor: Balai Penelitian Tanaman Rempah dan Obat. Tersedia dari https://balittro.litbang.pertanian.go.id/?p=856

Wei, W., Liang, H., Parvez, K., Zhuang, X., Feng, X., & Müllen, K. (2014). Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal free catalyst for the oxygen reduction reaction. Angewandte Chemie, 126(6), 1596–1600. https://doi.org/10.1002/ange.201307319

Yang, R., Su, Y. Z., Wang, T., & Yang, Q. (2016). Effect of chemical and organic fertilization on soil carbon and nitrogen accumulation in a newly cultivated farmland. Journal of Integrative Agriculture, 15(3), 658–666. https://doi.org/10.1016/S2095-3119(15)61107-8

Yang, X. C., Han, Z. Z., Ruan, X. Y., Chai, J., Jiang, S. W., & Zheng, R. (2019). Composting swine carcasses with nitrogen transformation microbial strains: succession of microbial community and nitrogen functional genes. Science of the Total Environment, 688, 555–566. https://doi.org/10.1016/j.scitotenv.2019.06.283

Yu, H., Chin, M., Yuan, T., Bian, H., Remer, L. A., Prosper, J. M., Omar, A., Winker, D., Yang, Y., Zhang, Y., Zhang, Z., & Zhao, C. (2015). The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophysical Research Letters, 42(6), 1984–1991. http://dx.doi.org/10.1002/2015GL063040

Refbacks

  • There are currently no refbacks.