The Impact of Termite Activity on Soil Fertility: A Case Study in Pine Stands in the Alas Bromo Education Forest Area

Sri Rezeki Febriani, Dwi Priyo Ariyanto, Ongko Cahyono, Rahayu Rahayu, Didi Tarmadi

Abstract

Termites function as soil engineers and play a crucial role in the decomposition of organic matter. This study was conducted in the Alas Bromo Educational Forest under pine stands of various age classes. The objective of the research was to investigate the influence of termite activity on soil fertility, as indicated by the levels of soil organic matter (SOM), soil organic carbon (SOC), and soil pH. The method employed involved baiting pinewood stakes placed in polyvinyl chloride pipes (PVC) to assess termite activity, which was evaluated based on the level of damage to the stakes and classified into damage classes. The stakes used were made of pine wood, similar to the species of the overlying stands. This study identified four termite genera in the Alas Bromo area: Macrotermes, Microtermes, Odontotermes, and Schedorhinotermes. The findings revealed significant differences in SOM and SOC across the stake damage classes within each stand. In general, the highest values were observed in soils with the highest levels of termite activity, as reflected in damage class 4. However, soil pH values did not show significant differences across the varying levels of termite activity. These findings highlight that termites, as soil engineers, play a vital role in enhancing soil fertility and hold promising potential for application in the pursuit of sustainable agriculture.

Keywords

decomposition; ecosystem engineers; Isoptera; soil organic carbon; soil organic matter

Full Text:

PDF

References

Ahmad, M. (1958). Key to the Indomalayan termites. Biologia, 4, 33–198. Retrieved from https://api.semanticscholar.org/CorpusID:222400575

Arinana, A., Rahman, M. M., Silaban, R. E. G., Himmi, S. K., & Nandika, D. (2022). Preference of subterranean termites among community timber species in Bogor, Indonesia. Journal of the Korean Wood Science and Technology, 50(6), 458–474. https://doi.org/10.5658/WOOD.2022.50.6.458

Ariyanto, D. P., Suyana, J., & Wijaya, H. Y. (2021). Kajian bahan organik tanah dengan porositas tanah pada berbagai tanaman penutup lahan di KHDTK Gunung Bromo UNS. Seminar Nasional dalam Rangka Dies Natalis Ke-45 UNS Tahun 2021, 5(1), 918–926. Retrieved from https://www.neliti.com/id/publications/365320/kajian-bahan-organik-tanah-dengan-porositas-tanah-pada-berbagai-tanaman-penutup#cite

Bakhtiari, A. R., Zakaria, M. P., Ramin, M., Yaziz, M. I., Lajis, M. N. H., & Bi, X. (2010). Characterization of perylene in tropical environment: Comparison of new and old fungus comb for identifying perylene precursor in Macrotermes gilvus termite nests of Peninsular Malaysia. EnvironmentAsia, 3(1), 13–19. https://doi.org/10.14456/ea.2010.3

Bera, D., Bera, S., & Chatterjee, N. D. (2020). Termite mound soil properties in West Bengal, India. Geoderma Regional, 22, e00293. https://doi.org/10.1016/j.geodrs.2020.e00293

Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168–180. https://doi.org/10.1038/nrmicro3182

Chisanga, K., Mbega, E. R., & Ndakidemi, P. A. (2020). Prospects of using termite mound soil organic amendment for enhancing soil nutrition in Southern Africa. Plants, 9(5), 649. https://doi.org/10.3390/plants9050649

Clarke, C., Francis, M., Sakala, B., Hattingh, M., & Miller, J. (2023). Enhanced carbon storage in semi-arid soils through termite activity. CATENA, 232, 107373. https://doi.org/10.1016/j.catena.2023.107373

Constantino, R. (2021). Termite taxonomy from 2001–2021: The contribution of Zootaxa. Zootaxa, 4979(1), 222–223. https://doi.org/10.11646/zootaxa.4979.1.22

Donovan, S. E., Eggleton, P., Dubbin, W. E., Batchelder, M., & Dibog, L. (2000a). The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: Termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia, 45(1), 1–11. https://doi.org/10.1078/0031-4056-00063

Donovan, S. E., Jones, D. T., Sands, W. A., & Eggleton, P. (2000b). Morphological phylogenetics of termites (Isoptera). Biological Journal of the Linnean Society, 70(3), 467–513. https://doi.org/10.1111/j.1095-8312.2000.tb01235.x

Egan, B., Nethavhani, Z., & Van Asch, B. (2021). Overview of the genetic diversity of African Macrotermes (Termitidae: Macrotermitinae) and implications for taxonomy, ecology and food science. Insects, 12(6), 518. https://doi.org/10.3390/insects12060518

Eggleton, P. (2010). An introduction to termites: Biology, taxonomy and functional morphology. Biology of Termites: a Modern Synthesis, 1–26. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4_1

Faszly, R., Idris, A. B., & Sajap, A. S. (2005). Termites (Insecta: Isoptera) assemblages from Sungai Bebar peat swamp forest, Pahang. Biodiversity Expedition Sungai Bebar, Pekan, Pahang, 4, 137–140. Retrieved from https://scholar.google.co.id/scholar?cites=11179744410136651947&as_sdt=2005&sciodt=0,5&hl=id

Febriani, S. R., Ariyanto, D. P., Cahyono, O., Dewi, W. S., Sumani, Komariah, ..., & Zaki, M. K. (2025). Functional role of termites as soil engineers: Their influence on soil organic carbon and nitrogen in pine and mahogany stands Alas Bromo. BIO Web of Conferences, 155, 01033. https://doi.org/10.1051/bioconf/202515501033

Filipiak, M., & Weiner, J. (2017). Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements. Physiological Entomology, 42(1), 73–84. https://doi.org/10.1111/phen.12168

Gunawan, G., Wijayanto, N., & Budi, S. W. (2019). Karakteristik sifat kimia tanah dan status kesuburan tanah pada agroforestri tanaman sayuran berbasis Eucalyptus sp. Journal of Tropical Silviculture, 10(2), 63–69. https://doi.org/10.29244/j-siltrop.10.2.63-69

Indrayani, Y. (2022). Peran rayap dalam keseimbangan ekosistem. Prosiding Seminar Nasional Penerapan Ilmu Pengetahuan dan Teknologi, 6(1), 1–8. https://doi.org/10.26418/pipt.2021.50

Issoufou, A. A., Soumana, I., Maman, G., Konate, S., & Mahamane, A. (2019). Effects of termites growth on litter decomposition: A modeling approach. International Journal of Recycling of Organic Waste in Agriculture, 8, 415–421. https://doi.org/10.1007/s40093-019-00314-7

Jones, J. A. (1990). Termites, soil fertility and carbon cycling in dry tropical Africa: A hypothesis. Journal of Tropical Ecology, 6(3), 291–305. https://doi.org/10.1017/S0266467400004533

Jouquet, P., Blanchart, E., & Capowiez, Y. (2014). Utilization of earthworms and termites for the restoration of ecosystem functioning. Applied Soil Ecology, 73, 34–40. https://doi.org/10.1016/j.apsoil.2013.08.004

Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P., & Lepage, M. (2006). Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32(2), 153–164. https://doi.org/10.1016/j.apsoil.2005.07.004

Kaschuk, G., Santos, J. C. P., Almeida, J. A., Sinhorati, D. C., & Berton-Junior, J. F. (2006). Termite activity in relation to natural grassland soil attributes. Scientia Agricola, 63, 583–588. https://doi.org/10.1590/S0103-90162006000600013

Khan, M. A., & Ahmad, W. (2018). Termites and sustainable management. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-72110-1

Khan, M. A., Ahmad, W., & Paul, B. (2018). Ecological impacts of termites. Termites and Sustainable Management (pp. 201–216). Springer, Cham. https://doi.org/10.1007/978-3-319-72110-1_10

Krishna, K., & Weesner, T. Jv. (1969). Biology of termites. New York and London: Academic Press.

Lejoly, J., Cornelis, J., Van Ranst, E., Jansegers, E., Tarpin, C., Degré, A., ..., & Malaisse, F. (2019). Effects of termite sheetings on soil properties under two contrasting soil management practices. Pedobiologia, 76, 150573. https://doi.org/10.1016/j.pedobi.2019.150573

Miura, T., & Maekawa, K. (2020). The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evolution and Development, 22(6), 425–437. https://doi.org/10.1111/ede.12335

Myer, A., & Forschler, B. T. (2019). Evidence for the role of subterranean termites (Reticulitermes spp.) in temperate forest soil nutrient cycling. Ecosystems, 22(3), 602–618. https://doi.org/10.1007/s10021-018-0291-8

Myer, A., Myer, M. H., Trettin, C. C., & Forschler, B. T. (2021). The fate of carbon utilized by the subterranean termite Reticulitermes flavipes. Ecosphere, 12(12), e03872. https://doi.org/10.1002/ecs2.3872

Nierop, K. G. J. (2001). Temporal and vertical organic matter differentiation along a vegetation succession as revealed by pyrolysis and thermally assisted hydrolysis and methylation. Journal of Analytical and Applied Pyrolysis, 61(1–2), 111–132. https://doi.org/10.1016/S0165-2370(01)00132-2

Nufus, M., Pertiwi, Y. A. B., & Sakya, A. T. (2020). Vegetation analysis and tree species diversity in KHDTK Gunung Bromo, Karanganyar, Central Java. IOP Conference Series: Earth and Environmental Science, 528(1), 012010. https://doi.org/10.1088/1755-1315/528/1/012010

Nyirenda, H., Assédé, E. P., Chirwa, P. W., Geldenhuys, C., & Nsubuga, F. W. (2019). The effect of land use change and management on the vegetation characteristics and termite distribution in Malawian Miombo woodland agroecosystem. Agroforestry Systems, 93(6), 2331–2343. https://doi.org/10.1007/s10457-019-00358-8

Oktariani, P., Hadiwijaya, D. D., Sumawinata, B., & Djajakirana, G. (2023). Nutrient release from decomposition of A. mangium and Nephrolepis sp. litter. IOP Conference Series: Earth and Environmental Science, 1266(1), 012070. https://doi.org/10.1088/1755-1315/1266/1/012070

Rachmadiyanto, A. N., Helmanto, H., Himmi, S. K., Tarmadi, D., Wikantyoso, B., Yusuf, S., …, & Haryanto, A. P. (2023). Non-destructive detection of tree deterioration due to termite attack in plant conservation areas. IOP Conference Series: Earth and Environmental Science, 1266(1), 012071. https://doi.org/10.1088/1755-1315/1266/1/012071

Radford, J. M., Chen, D., Chernyshova, A. M., Taylor, C., Guoth, A. W., Wu, T., Hill, K. A., & Thompson, G. J. (2022). Differential selection on caste-associated genes in a subterranean termite. Insects, 13(3), 224. https://doi.org/10.3390/insects13030224

Rouland-Lefèvre, C. (2010). Termites as pests of agriculture. Biology of Termites: a Modern Synthesis, 499–517. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4_18

Sarcinelli, T. S., Schaefer, C. E. G. R., Fernandes Filho, E. I., Mafia, R. G., & Neri, A. V. (2013). Soil modification by termites in a sandy-soil vegetation in the Brazilian Atlantic rain forest. Journal of Tropical Ecology, 29(5), 439–448. https://doi.org/10.1017/S0266467413000497

Schaefer, C. E. G. R., Marins, A., Resende, G., Corrêa, O. deSouza, & Nunes, J. A. (2016). Ecology and conservation of mountaintop grasslands in Brazil. Ecology and Conservation of Mountaintop Grasslands in Brazil, 1–567. Springer Cham. https://doi.org/10.1007/978-3-319-29808-5

Sulantika, S., & Diba, F. (2019). Identifikasi rayap perusak pohon di Arboretum Sylva Universitas Tanjungpura. Jurnal Hutan Lestari, 7(4), 1633–1641. https://doi.org/10.26418/jhl.v7i4.38208

Thant, M., Lin, X., Atapattu, A. J., Cao, M., Xia, S. wen, Liu, S., & Yang, X. (2023). Activity-density and spatial distribution of termites on a fine-scale in a tropical rainforest in Xishuangbanna, southwest China. Soil Ecology Letters, 5(1), 169–180. https://doi.org/10.1007/s42832-022-0141-7

Toly, S. R., Septa, F. M. I., Meye, E. D., Ati, V. M., Dima, A. O. M., & Adung, A. A. (2024). Karakteristik sarang dan aktifitas sosial rayap (Isoptera) pada kawasan Hutan Camplong. Biotropikal Sains, 21(2), 66–74. Retrieved from https://ejurnal.undana.ac.id/index.php/biotropikal/issue/download/734/8-Karakteristik

Traoré, S., Ouattara, K., Ilstedt, U., Schmidt, M., Thiombiano, A., Malmer, A., & Nyberg, G. (2015). Effect of land degradation on carbon and nitrogen pools in two soil types of a semi-arid landscape in West Africa. Geoderma, 241–242, 330–338. https://doi.org/10.1016/j.geoderma.2014.11.027

van de Peppel, L. J. J., & Aanen, D. K. (2020). High diversity and low host-specificity of Termitomyces symbionts cultivated by Microtermes spp. indicate frequent symbiont exchange. Fungal Ecology, 45, 100917. https://doi.org/10.1016/j.funeco.2020.100917

Waller, D. A., Jones, C. G., & La Fage, J. P. (1990). Measuring wood preference in termites. Entomologia Experimentalis et Applicata, 56(2), 117–123. https://doi.org/10.1111/j.1570-7458.1990.tb01388.x

Wu, T., Dhami, G. K., & Thompson, G. J. (2018). Soldier-biased gene expression in a subterranean termite implies functional specialization of the defensive caste. Evolution & Development, 20(1), 3–16. https://doi.org/10.1111/ede.12243

Refbacks

  • There are currently no refbacks.