Synthesis of Poly Acrylic Acid (PAA) Modified Silver Nanoparticles, Using Trisodium Citrate for Heavy Metal Detection

Yussi Pratiwi, Adelia Widyaresti, Tritiyatma Hadinugrahaningsih, Elsa Vera Nanda, Devi Nur Anisa

Abstract

Therefore, this project was to prepare and characterize silver nanoparticles (AgNPs) and study their application for colorimetric detection of heavy metal ions. AgNPs are synthesized by a bottom-up method in which AgNO3 serves as the precursor, which is then reduced using trisodium citrate and stabilized by 1 vol.% polyacrylic acid (PAA). Trisodium citrate facilitates the reduction of Ag+ ions due to its negatively charged carboxylic groups, whereas PAA enhances stability and selectivity. Under the best reaction parameters condition, AgNPs produced brown-yellow colloids with a Surface Plasmon Resonance (SPR) peak of 403 nm. A particle size analysis showed an average particle diameter of 29.9 nm, with a standard deviation σ of 0.482. Fourier Transform Infrared Spectroscopy (FTIR) analysis confirmed that hydroxyl groups -OH and carbonyl groups C=O play a role in reducing Ag+ ions. Because they are highly active, AgNPs can respond to Hg2+ in tests, marking the color change from brown-yellow to transparent white within about one minute. Methods testing for validation of linearity revealed an R2 = 0.9985, and a LOD and LOQ are ca. 0.074 ppm and 0.224 ppm, respectively. At 700 ppm Hg2+, the selectivity was good. These results demonstrate that AgNPs are sensitive and efficient sensors of Hg2+ ions and indicate how to find promising new ways to detect heavy metals in environmental monitoring.

Keywords

Silver nanoparticles; trisodium citrate; colorimetry; validation method

Full Text:

Untitled PDF

References

[1] V. T. Siringoringo, D. Pringgenies, and A. Ambariyanto, "Kajian Kandungan Logam Berat Merkuri (Hg), Tembaga (Cu), dan Timbal (Pb) pada Perna viridis di Kota Semarang," Jurnal Maritim dan Riset, vol. 11, no. 3, pp. 539–546, Aug. 2022, doi: 10.14710/jmr.v11i3.33864.

[2] D. Y. Pratiwi, "Dampak Pencemaran Logam Berat (Timbal, Tembaga, Merkuri, Kadmium, Krom) Terhadap Organisasi Perairan dan Kesehatan Manusia," 2020.

[3] W. D. Prasetyo, "Sintesis Nanomaterial Perak dengan Kontrol Terhadap Bentuk dan Ukuran," 2018.

[4] F. F. Azhar, "Pemanfaatan Nanopartikel Perak Ekstrak Belimbing Wuluh Sebagai Indikator Kolorimetri Logam Merkuri," Jurnal Ipteks Terapan, vol. 13, no. 1, p. 34, May 2019, doi: 10.22216/jit.2019.v13i1.3614.

[5] L. Rahmidar, H. Al Fatih, and A. Sulastri, "Pemanfaatan Nanopartikel Logam Mulia untuk Mengukur Kadar Logam Berat dalam Berbagai Sampel Cair," PENDIPA Journal of Science Education, vol. 4, no. 3, pp. 70–74, Oct. 2020, doi: 10.33369/pendipa.4.3.70-74.

[6] H. A. Ariyanta, W. Dan, and S. Priatmoko, "Preparasi Nanopartikel Perak dengan Metode Reduksi dan Aplikasinya Sebagai Antibakteri Penyebab Luka Infeksi," Jurnal Kimia Indonesia, vol. 3, no. 1, 2014. [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ijcs.

[7] P. S. Yerragopu et al., "Chemical Synthesis of Silver Nanoparticles Using Tri-sodium Citrate, Stability Study and Their Characterization," International Research Journal of Pure and Applied Chemistry, pp. 37–50, Mar. 2020, doi: 10.9734/irjpac/2020/v21i330159.

[8] H. Barani and B. Mahltig, "Microwave-Assisted Synthesis of Silver Nanoparticles: Effect of Reaction Temperature and Precursor Concentration on Fluorescent Property," Journal of Cluster Science, vol. 33, no. 1, pp. 101–111, Jan. 2022, doi: 10.1007/s10876-020-01945-x.

[9] S. J. Yu, Y. G. Yin, and J. F. Liu, "Silver nanoparticles in the environment," 2013, doi: 10.1039/c2em30595j.

[10] N. Rahayu, G. Gusrizal, and N. Nurlina, "Ekstrak Umbi Bawang Dayak (Eleutherine palmifolia (L.) Merr.) Sebagai Pereduksi Ion Perak dalam Sintesis Nanopartikel Perak," Indonesian Journal of Pure and Applied Chemistry, 2020. [Online]. Available: http://jurnal.untan.ac.id/index.php/IJoPAC.

[11] R. N. Ridwan et al., "Sintesis dan Studi Stabilitas Nanopartikel Perak Tertudung Asam Salisilat," Indonesian Journal of Pure and Applied Chemistry, vol. 3, no. 1, pp. 83–90, 2018, doi: 10.26418/indonesian.v1i3.34195.

[12] S. Qurrataayun et al., "Sintesis Hijau Nanopartikel Perak (AgNP) Menggunakan Ekstrak Daun Serai (Cymbopogon citratus) Sebagai Bioreduktor," Media Farmasi Fakultas Farmasi Universitas Hasanuddin, vol. 26, no. 3, pp. 124–128, 2022, doi: 10.20956/mff.v26i3.21047.

[13] S. Kasim et al., "Sintesis Nanopartikel Perak Menggunakan Ekstrak Daun Eceng Gondok (Eichornia crassipes) Sebagai Bioreduktor," KOVALEN: Jurnal Riset Kimia, vol. 6, no. 2, pp. 126–133, Sep. 2020, doi: 10.22487/kovalen.2020.v6.i2.15137.

[14] R. Nurbayasari et al., "Biosintesis dan Karakterisasi Nanopartikel ZnO dengan Ekstrak Rumput Laut Hijau Caulerpa sp.," Jurnal Perikanan Universitas Gadjah Mada, vol. 19, no. 1, pp. 17–28, 2017.

[15] M. K. Alqadi et al., "pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction," Materials Science Poland, vol. 32, no. 1, pp. 107–111, 2014, doi: 10.2478/s13536-013-0166-9.

[16] S. Yanti et al., "Sintesis dan Stabilitas Nanopartikel Perak (AgNPs) Menggunakan Trinatrium Sitrat," in Prosiding Seminar Nasional Kimia, 2021, pp. 142–146.

[17] M. S. Arif et al., "Synthesis silver nanoparticles using trisodium citrate and development in analysis method," in AIP Conference Proceedings, Sep. 2021, doi: 10.1063/5.0059493.

[18] E. Ahangar, "The pH Role in Nanotechnology, Electrochemistry, and Nano-Drug Delivery," 2022.

[19] Y. Qin et al., "Size control over spherical silver nanoparticles by ascorbic acid reduction," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 372, no. 1–3, pp. 172–176, Dec. 2010, doi: 10.1016/j.colsurfa.2010.10.013.

[20] H. Siregar et al., "Biosintesis Nanopartikel Perak Menggunakan Ekstrak Kulit Buah Nanas untuk Deteksi Hidrogen Peroksida Berdasarkan Metode Kolorimetri," in Prosiding Seminar Nasional Fisika Universitas Riau ke-VI, pp. 20–26, 2021.

[21] A. Kurt and Y. Çelik, "Synthesis of Quasi-Spherical Silver Nanoparticles by Chemical Reduction Route Using Different Reducing Agents," Konya Journal of Engineering Sciences, vol. 8, no. 4, pp. 828–838, Dec. 2020, doi: 10.36306/konjes.700622.

[22] Y. Hu et al., "Size-controlled synthesis of highly water-soluble silver nanocrystals," Journal of Solid State Chemistry, vol. 181, no. 7, pp. 1524–1529, Jul. 2008, doi: 10.1016/j.jssc.2008.02.028.

[23] D. Susanthy et al., "The synthesis and stability study of silver nanoparticles prepared using p-aminobenzoic acid as reducing and stabilizing agent," Indonesian Journal of Chemistry, vol. 18, no. 3, pp. 421–427, Aug. 2018, doi: 10.22146/ijc.29312.

[24] M. Avissa and M. Alauhdin, "Selective Colorimetric Detection of Mercury(II) Using Silver Nanoparticles-Chitosan," Molekul, vol. 17, no. 1, pp. 107–115, Mar. 2022, doi: 10.20884/1.jm.2022.17.1.5597.

[25] T. Mudalige et al., "Characterization of Nanomaterials: Tools and Challenges," in Nanomaterials for Food Applications, Elsevier, 2018, pp. 313–353, doi: 10.1016/B978-0-12-814130-4.00011-7.

[26] M. T. Alula et al., "Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine," Analytica Chimica Acta, vol. 1007, pp. 40–49, May 2018, doi: 10.1016/j.aca.2017.12.016.

[27] J. V. Rohit and S. K. Kailasa, "5-Sulfo anthranilic acid dithiocarbamate functionalized silver nanoparticles as a colorimetric probe for the simple and selective detection of tricyclazole fungicide in rice samples," Analytical Methods, vol. 6, no. 15, pp. 5934–5941, Aug. 2014, doi: 10.1039/c3ay42092b.

[28] M. Avissa and M. Alauhdin, "Selective Colorimetric Detection of Mercury(II) Using Silver Nanoparticles-Chitosan," Molekul, vol. 17, no. 1, pp. 107–115, Mar. 2022, doi: 10.20884/1.jm.2022.17.1.5597.

[29] R. Adriansyah and M. L. Firdaus, "Analisis Hg2+ dengan Menggunakan Nanopartikel Perak (NPP) Sebagai Indikator Kolorimetri dengan Metode Spektrofotometri," Jurnal Pendidikan dan Ilmu Kimia, vol. 1, no. 2, pp. 136–143, 2017, doi: 10.33369/atp.v1i2.3539.

[30] R. M. Napitupulu et al., "Validasi Metode Penentuan Mn dalam Oli Lubrikan dengan Metode Pengenceran Langsung Menggunakan Spektrofotometer Serapan Atom," 2019.

[31] A. Susanto et al., "Validasi Metode Analisis Penentuan Kadar Logam Berat Pb, Cd dan Cr Terlarut dalam Limbah Cair Industri Tekstil dengan Metode Inductively Coupled Plasma Optical Emission Spectrometry Prodigy7," Jurnal Ilmu Lingkungan, vol. 19, no. 1, pp. 191–200, Apr. 2021, doi: 10.14710/jil.19.1.191-200.

[32] N. Angger Ratnawati et al., "Validasi Metode Pengujian Logam Berat Timbal (Pb) dengan Destruksi Basah Menggunakan FAAS dalam Sedimen Sungai Banjir Kanal Barat Semarang," Jurnal Kimia Indonesia, vol. 8, no. 1, 2019. [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ijcs.

[33] World Health Organization, "Mercury in Drinking-water Background Document for Development of WHO Guidelines for Drinking-water Quality," 2005.

Refbacks

  • There are currently no refbacks.