Cover Image

Non-Enzymatic Detection of Glucose and Ketones in Urine using Paper-Based Analytical Devices

Kamila Rohadatul 'Aisy, Ahmad Luthfi Fahmi, Hermin Sulistyarti, Ika Oktavia Wulandari, Akhmad Sabarudin

Abstract

Diabetes, driven by unbalanced diets and unhealthy lifestyles, is highly prevalent. In Indonesia, its prevalence is projected to reach 28.6 million by 2045. Microfluidic paper-based analytical devices (μPADs) are paper-based analytical tools that use hydrophilic paper for measurement and hydrophobic barriers to control fluid flow. This research aims to develop a non-enzymatic method for detecting glucose and ketones in artificial urine using S2Z-μPADs. The fabrication of S2Z-μPADs involves printing the design on Whatman No. 1 paper using wax printing and applying silver nanoparticles for glucose detection and the Schiff base reaction for ketone detection. The results show that the optimum condition for glucose detection is achieved with an AgNO3 concentration of 500 mM. A NaOH concentration of 10 M. Acetoacetate detection is optimized with a glycine concentration of 1 M, sodium nitroprusside concentration of 15%, NaOH concentration of 1 M, a drying time of 8 minutes, and a reaction time of 10 minutes. Validation results demonstrate good linearity for glucose (R² = 0.9821) and ketones (R² = 0.995). High precision was achieved with relative standard deviation (RSD) values of 3.792% for glucose and 1.482% for ketones. The obtained limits of detection (LOD) and limits of quantification (LOQ) indicate that the developed S2Z-μPADs can differentiate between each category of diabetes. The accuracy of glucose and ketone detection ranges from 87.463% to 97.374%. The high accuracy of the μPADs highlights their potential for reliable diabetes management and effective disease monitoring.

Full Text:

PDF

References

[1] E. Mozzillo, F. Zanfardino, C. Madeo, A. Rossi, R. Spadaro, G. Monzani, M. Santoro, F. Rollato, L. Iafusco, and L. Tinto, "Unhealthy lifestyle habits and diabetes-specific health-related quality of life in youths with type 1 diabetes," Acta Diabetol., vol. 54, no. 12, pp. 1073–1080, Dec. 2017,
doi: 10.1007/s00592-017-1051-5.

[2] D. Atlas, International Diabetes Federation, 2nd ed. Brussels, Belgium: International Diabetes Federation, 2015.

[3] American Diabetes Association, "Diagnosis and Classification of Diabetes Mellitus," Diabetes Care, vol. 37, no. Supplement_1, pp. S81–S90, Jan. 2014.

[4] U. Alam, C. R. Asghar, R. F. Frost, S. Kumar, and J. Malik, "General aspects of diabetes mellitus," in Handbook of Clinical Neurology, vol. 126, Elsevier, 2014, pp. 211–222,
doi:10.1016/B978-0-444-53480-4.00016-3.

[5] S. Todkar, "Diabetes Mellitus the ‘Silent Killer’ of mankind: An overview on the eve of World Health Day!," J. Med. Allied Sci., vol. 6, no. 1, p. 39, 2016,
doi: 10.5455/jmas.214333.

[6] V. Kumar and K. D. Gill, "Qualitative Analysis of Ketone Bodies in Urine," in Basic Concepts in Clinical Biochemistry: A Practical Guide, Singapore: Springer Singapore, 2018, pp. 119–122, doi: 10.1007/978-981-10-8188-8_29.

[7] K. Kaul, B. N. Tarr, P. K. Sharma, and D. K. Dutt, "Introduction to Diabetes Mellitus," Diabetes Old Dis., 2013,
doi: 10.1007/978-3-642-17458-0_1.

[8] S. Prapaporn, T. Woranart, and P. Phisit, "Nanocellulose Films to Improve the Performance of Distance-based Glucose Detection in Paper-based Microfluidic Devices," Anal. Sci., vol. 36, no. 12, pp. 1447–1451, Dec. 2020,
doi: 10.2116/analsci.20P207.

[9] J. C. G. Coolen and J. Verhaeghe, "Physiology and clinical value of glycosuria after a glucose challenge during pregnancy," Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 150, no. 2, pp. 132–136, Jun. 2010,
doi: 10.1016/j.ejogrb.2010.02.003.

[10] M. R. Clarkson, M. D. Magee, C. E. Pickering, and B. R. Gilbert, "Chapter 2 - Laboratory Assessment of Kidney Disease," in Pocket Companion to Brenner and Rector’s The Kidney (Eighth Edition), Philadelphia: W.B. Saunders, 2011, pp. 21–41,
doi: 10.1016/B978-1-4160-6195-1.00002-3.

[11] J. Huang, X. Liang, J. Lin, and C. Zhang, "Update on Measuring Ketones," J. Diabetes Sci. Technol., vol. 18, no. 3, pp. 714–726, May 2024,
doi: 10.1177/19322968231168314.

[12] S. Misra and N. S. Oliver, "Utility of ketone measurement in the prevention, diagnosis and management of diabetic ketoacidosis," Diabet. Med., vol. 32, no. 1, pp. 14–23, Jan. 2015,
doi: 10.1111/dme.12604.

[13] S. Mitra, M. K. Pal, S. Roy, and P. Sengupta, "Digital electronic based portable device for colorimetric quantification of ketones and glucose level in human urine," Measurement, vol. 214, p. 112848, Jun. 2023,
doi:10.1016/j.measurement.2023.112848

[14] B. J. Stubbs, E. Cox, C. Evans, and D. Clarke, "On the Metabolism of Exogenous Ketones in Humans," Front. Physiol., vol. 8, p. 848, Oct. 2017,
doi: 10.3389/fphys.2017.00848.

[15] M.-Y. Jia, T. A. Nguyen, C. Jin, and Y. Wang, "The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine," Biosens. Bioelectron., vol. 74, pp. 1029–1037, Dec. 2015,
doi: 10.1016/j.bios.2015.06.034.

[16] A. Brown, L. R. Chalmers, and P. Mancini, "Insulin-associated weight gain in obese type 2 diabetes mellitus patients: What can be done?," Diabetes Obes. Metab., vol. 19, no. 12, pp. 1655–1668, Dec. 2017,
doi: 10.1111/dom.13007.

[17] C. Chairani and S. Karlina, "Pemeriksaan Keton Urine Pada Pasien Diabetes Melitus," Pros. Semin. Kesehat. Perintis, vol. 3, no. 1, pp. 150–154, 2020.

[18] B. Giri, "Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity," Biomed. Pharmacother., vol. 107, pp. 306–328, 2018,
doi: 10.1016/j.biopha.2018.07.154.

[19] V. Kumar, A. K. Singh, R. Tripathi, and A. Kumar, "Ketoalkalosis: Masked Presentation of Diabetic Ketoacidosis With Literature Review," J. Endocrinol. Metab., vol. 7, no. 6, pp. 194–196, 2017, doi: 10.14740/jem400w.

[20] B.-H. Jun, "Silver Nano/Microparticles: Modification and Applications," Int. J. Mol. Sci., vol. 20, no. 11, p. 2609, May 2019,
doi: 10.3390/ijms20112609.

[21] E. Susilowati, P. Purnamasari, and S. M. Widiastuti, "Preparation of Silver-Chitosan Nanocomposites Colloidal and Film as Antibacteri Material," JKPK J. Kim. Dan Pendidik. Kim., vol. 5, no. 3, p. 300, Dec. 2020,
doi: 10.20961/jkpk.v5i3.46711.

[22] G. Chen, Y. Hu, and C. Sun, "In Situ Synthesis of Silver Nanoparticles on Cellulose Fibers Using D-Glucuronic Acid and Its Antibacterial Application," Materials, vol. 12, no. 19, p. 3101, Sep. 2019,
doi: 10.3390/ma12193101.

[23] K.-S. Chou and Y.-S. Lai, "Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids," Mater. Chem. Phys., vol. 83, no. 1, pp. 82–88, Jan. 2004,
doi: 10.1016/j.matchemphys.2003.09.031.

[24] H. S. Budi, D. H. Pratama, and M. I. T. Khair, "Synthesis of Polystyrene Fiber Membranes Prepared by Electrospinning: Effect of AgNO3 on the Microstructure," JKPK J. Kim. Dan Pendidik. Kim., vol. 9, no. 1, p. 130, Apr. 2024,
doi: 10.20961/jkpk.v9i1.84601.

[25] T. Pinheiro, P. Pinto, C. Maia, and A. S. Almeida, "Paper-Based In-Situ Gold Nanoparticle Synthesis for Colorimetric, Non-Enzymatic Glucose Level Determination," Nanomaterials, vol. 10, no. 10, p. 2027, Oct. 2020,
doi: 10.3390/nano10102027.

[26] E. Susilowati, S. Oktaviani, and A. Handayani, "Synthesin and Characterization Chitosan Film with Silver Nanoparticle Addition As A Multiresistant Antibacteria Material," JKPK J. Kim. Dan Pendidik. Kim., vol. 6, no. 3, p. 371, Dec. 2021,
doi: 10.20961/jkpk.v6i3.57101.

[27] X. Gao, Z. Dai, and Z. Shi, "Green synthesis and characteristic of core-shell structure silver/starch nanoparticles," Mater. Lett., vol. 65, no. 19–20, pp. 2963–2965, Oct. 2011,
doi: 10.1016/j.matlet.2011.06.065.

[28] V. Raji, S. Anirudhan, and J. Paul, "Synthesis of Starch-Stabilized Silver Nanoparticles and Their Antimicrobial Activity," Part. Sci. Technol., vol. 30, no. 6, pp. 565–577, Nov. 2012,
doi: 10.1080/02726351.2012.701789.

[29] Y. Pratiwi, R. Kusuma, and A. B. Lestari, "Biosynthesis of Poly Acrylic Acid (PAA) Modified Silver Nanoparticles, Using Basil Leaf Extract (Ocimum basilicum L.) for Heavy Metal Detection," JKPK J. Kim. Dan Pendidik. Kim., vol. 8, no. 3, p. 323, Dec. 2023,
doi: 10.20961/jkpk.v8i3.78641.

[30] F. M. Ibrahim and S. M. Abdalhadi, "Performance of Schiff Bases Metal Complexes and their Ligand in Biological Activity: A Review," Al-Nahrain J. Sci., vol. 24, no. 1, pp. 1–10, Mar. 2021,
doi: 10.22401/ANJS.24.1.01.

[31] T. Kaneta, Y. Karita, and K. Kaneko, "Microfluidic paper-based analytical devices with instrument-free detection and miniaturized portable detectors," Appl. Spectrosc. Rev., vol. 54, no. 2, pp. 117–141, Feb. 2019,
doi: 10.1080/05704928.2018.1465505.

[32] E. Noviana, R. J. McCord, M. G. Clark, and S. R. Henry, "Microfluidic Paper-Based Analytical Devices: From Design to Applications," Chem. Rev., vol. 121, no. 19, pp. 11835–11885, Oct. 2021, doi: 10.1021/acs.chemrev.1c00160.

[33] L.-M. Fu and Y.-N. Wang, "Detection methods and applications of microfluidic paper-based analytical devices," TrAC Trends Anal. Chem., vol. 107, pp. 196–211, Oct. 2018,
doi: 10.1016/j.trac.2018.08.006.

[34] D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, "Simple, distance-based measurement for paper analytical devices," Lab. Chip, vol. 13, no. 12, p. 2397, 2013,
doi: 10.1039/c3lc00096k.

[35] M. Rahbar, J. Bruch, and D. M. Cate, "Ion-Exchange Based Immobilization of Chromogenic Reagents on Microfluidic Paper Analytical Devices," Anal. Chem., vol. 91, no. 14, pp. 8756–8761, Jul. 2019,
doi: 10.1021/acs.analchem.9b00848.

[36] M. I. Sari, R. D. Ningrum, and E. E. Siswanta, "Microfluidic Paper based Analytical Device (µpads) for Analysis of Benzoat Acid in Packaged Beverages," IOP Conf. Ser. Mater. Sci. Eng., vol. 546, no. 3, p. 032028, Jun. 2019,
doi: 10.1088/1757-899X/546/3/032028.

[37] Y. F. Wisang, A. H. Pramudya, and A. R. Maharani, "Microfluidic Paper-based Analytical Devices (µPADs) For Analysis Lead Using Naked Eye and Colorimetric Detections," IOP Conf. Ser. Mater. Sci. Eng., vol. 546, no. 3, p. 032033, Jun. 2019,
doi: 10.1088/1757-899X/546/3/032033.

[38] K. Bakalorz, K. Rybarczyk, and L. Biernat, "Unprecedented Water Effect as a Key Element in Salicyl-Glycine Schiff Base Synthesis," Molecules, vol. 25, no. 5, p. 1257, Mar. 2020,
doi: 10.3390/molecules25051257.

[39] M. Mukhopadhyay, A. Goswami, and P. Mondal, "Laser printing based colorimetric paper sensors for glucose and ketone detection: Design, fabrication, and theoretical analysis," Sens. Actuators B Chem., vol. 371, p. 132599, Nov. 2022,
doi: 10.1016/j.snb.2022.132599.

[40] H. I. Salaheldin, “Optimizing the synthesis conditions of silver nanoparticles using corn starch and their catalytic reduction of 4-nitrophenol,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 9, no. 2, p. 025013, Jun. 2018,
doi: 10.1088/2043-6254/aac4eb.

[41] G. Eka Putri, F. Rahayu Gusti, A. Novita Sary, and R. Zainul, “Synthesis of silver nanoparticles used chemical reduction method by glucose as reducing agent,” J. Phys. Conf. Ser., vol. 1317, no. 1, p. 012027, Oct. 2019,
doi: 10.1088/1742-6596/1317/1/012027.

[42] M. Singh, I. Sinha, and R. K. Mandal, “Role of pH in the green synthesis of silver nanoparticles,” Mater. Lett., vol. 63, no. 3–4, pp. 425–427, Feb. 2009, doi:10.1016/j.matlet.2008.10.067.

[43] U. Sani, H. U. Na’ibi, and S. A. Dailami, “In vitro antimicrobial and antioxidant studies on N-(2- hydroxylbenzylidene) pyridine -2-amine and its M(II) complexes,” Niger. J. Basic Appl. Sci., vol. 25, no. 1, p. 81, Jul. 2018,
doi: 10.4314/njbas.v25i1.11.

[44] S. A. Klasner, A. K. Price, K. W. Hoeman, R. S. Wilson, K. J. Bell, and C. T. Culbertson, “Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva,” Anal. Bioanal. Chem., vol. 397, no. 5, pp. 1821–1829, Jul. 2010,
doi: 10.1007/s00216-010-3718-4.

[45] T. Hüppe, D. Lorenz, F. Maurer, T. Fink, R. Klumpp, and S. Kreuer, “Quantification of Volatile Acetone Oligomers Using Ion-Mobility Spectrometry,” J. Anal. Methods Chem., vol. 2021, pp. 1–6, Aug. 2021,
doi: 10.1155/2021/6638036.


Refbacks

  • There are currently no refbacks.