Enhancing Conceptual Understanding of Buffer Solutions with an Intertextual E-Book Prototype
Abstract
The intertextual-based e-book prototype helps students understand buffer solutions by connecting the three levels of chemical representation: macroscopic, submicroscopic, and symbolic. This connection allows students to visualize chemical phenomena from simple to complex. The study aims to enhance students' conceptual understanding using this e-book prototype. The research and development (R&D) method followed five stages: research and information gathering, product development planning, initial product development, limited trials, and initial product revision. This process yielded a highly validated e-book prototype that promotes innovation. The validation results showed high feasibility in substance (85.71%), instructional methods (90.90%), and language (100%). Experts deemed the e-book prototype highly effective in improving conceptual understanding through its intertextual approach. Pretest and posttest assessments of 30 students indicated improved conceptual understanding after using the e-book. Initially, students demonstrated macroscopic and symbolic level abilities without associating the three levels of representation. After using the e-book, they could connect these levels, enhancing their understanding and conceptual understanding. The N_Gain scores for pretest and posttest assessments were 0.48 for the high category, 0.45 for the medium category, and 0.44 for the low category, showing moderate improvement. The t-test results (Sig. (2-tailed) = 0.000 < 0.05) confirmed the effectiveness of the e-Book. Teacher and student responses averaged 90% and 85.5%, respectively, indicating that the intertextual-based e-book on buffer solutions is highly suitable as a self-learning resource to improve conceptual understanding.
Keywords
Full Text:
PDFReferences
[1] A. L. Chandrasegaran, D. F. Treagust, and M. Mocerino, "Emphasizing Multiple Levels of Representation To Enhance Students’ Understandings of the Changes Occurring during Chemical Reactions," Chemical Education Research, vol. 86, no. 12, pp. 1433–1436, 2009.
doi: 10.1021/ed086p1433
[2] I. Farida, Liliasari, and W. Sopandi, "Pembelajaran Berbasis Web untuk Meningkatkan Kemampuan Interkoneksi Multiple Level Representasi Mahasiswa Calon Guru pada Topik Kesetimbangan Larutan Asam-Basa," J. Chemica, vol. 12, no. 1, pp. 14–24, 2011. doi:10.35580/chemica.v12i1.131
[3] S. Tan and R. Waugh, "Use of virtual-reality in teaching and learning molecular biology," in 3D Immersive and Interactive Learning, Singapore: Springer, 2014, pp. 17–43.
[4] H. K. Wu, J. S. Krajcik, and E. Soloway, "Promoting Conceptual Understanding of Chemical Representations: Students’ Use of a Visualization Tool in the Classroom," J. Res. Sci. Teach., vol. 38, no. 7, pp. 821–842, 2001. doi:10.1002/tea.1033
[5] L. Z. Jaber and S. BouJaoude, "A Macro-Micro-Symbolic Teaching to Promote Relational Understanding of Chemical Reactions," International Journal of Science Education, vol. 34, no. 7, pp. 973–998, 2012. doi:10.1080/09500693.2011.569959
[6] Y. I. Ulva, S. Santosa, and P. Parlan, "Identifikasi Tingkat Pemahaman Konsep Larutan Penyangga Aspek Makroskopik, Submikroskopik, dan Simbolik pada Siswa Kelas XI IPA SMAN 3 Malang Tahun Ajaran 2013/2014," Jurnal Pembelajaran Kimia, vol. 1, no. 2, pp. 69–75, 2016.
[7] A. L. Chandrasegaran, D. F. Treagust, and M. Mocerino, "The development of a two–tier multiple choice diagnostic instrument for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation," Chem. Educ. Res. Pract., vol. 8, no. 3, pp. 293–307, 2007.
doi:10.1039/B7RP90006F
[8] H. K. Wu, J. S. Krajcik, and E. Soloway, "Promoting Understanding of Chemical Representations: Students’ Use of a Visualization Tool in the Classroom," Journal of Research in Science Teaching, vol. 38, no. 7, pp. 821–842, 2001.
doi: 10.1002/tea.1033
[9] D. Yuliana, R. B. Rudibyani, and T. Evkar, "Efektivitas LKS Berbasis Multipel Representasi dalam Meningkatkan Penguasaan Konsep Materi Larutan Elektrolit-Non Elektrolit," Jurnal Pendidikan dan Pembelajaran Kimia, vol. 7, no. 8, pp. 1–13, 2018.
[10] S. N. Kadek, S. I. Nyoman, and W. N. Made, "Analisis Kesulitan Belajar Kimia Siswa Kelas XI Pada Materi Larutan Penyangga," Jurnal Imiah Pendidikan dan Pembelajaran, vol. 4, no. 1, 2020.
doi:10.23887/jipp.v4i1.15469
[11] M. J. Djangi, Sugiarti, and Ramdani, "Kesulitan Belajar Peserta Didik Kelas XI MIPA 3 SMAN 3 Maros pada Materi Larutan Penyangga," Artikel Metrics, Universitas Negeri Makasar, 2021.
[12] G. Chittleborough and D. F. Treagust, "The modelling ability of non-major chemistry students and their understanding of the sub-microscopic level," Chemistry Education Research and Practice, vol. 8, no. 3, pp. 274–292, 2007. [Online]. Available: https://doi.org/10.1039/B7RP90009C
[13] I. Farida, "Kemampuan Mahasiswa Merepresentasikan Tingkat Makroskopik, Mikroskopik Dan Simbolik Pada Topik Sintesis Amonia (Skala Lab)," in Prosiding Seminar Nasional Kimia dan Pendidikan Kimia IV. Bandung: Jurusan Pendidikan Kimia FPMIPA UPI, 2008.
[14] C. Chuenmanee and K. Thathong, "The current practice of using multiple representations in year 4 science classrooms," AIP Conference Proceedings, 2018.
doi: 10.1063/1.5019506
[15] A. Rahmawati, "Pengembangan Modul Kimia Dasar Berbasis Multipel Level Representasi Untuk Meningkatkan Kemampuan Berpikir Kritis Mahasiswa," Jurnal, vol. 2, no. 5, Semarang: UIN Walisongo, 2015.
[16] M. Finnajah, "Pengembangan Modul Fisika SMA Berbasis Multipel Representasi Guna Meningkatkan Pemahaman Konsep dan Hasil Belajar Peserta Didik," Jurnal, vol. 1, no. 8, 2016.
[17] T. Sulistyowati and S. Poedjiastoeti, "Kelayakan Multimedia Interaktif Berbasis Intertekstual Pada Materi Reaksi Kimia Untuk Kelas X Sma," Unesa Journal of Chemical Education, vol. 2, no. 3, pp. 57–63, 2013.
doi: 10.26740/ujced.v2n3.p%25p
[18] H. K. Wu, "Linking the Microscopic View of Chemistry to Real-Life Experiences: Intertextuality in a High-School Science Classroom," Sci. Educ., vol. 87, no. 6, pp. 868–891, 2003.
doi: 10.1002/sce.10090
[19] F. Sandi, O. Rumape, and E. Mohamad, "Pengaruh Media Animasi terhadap Hasil Belajar Siswa Kelas XI pada Materi Larutan Penyangga di SMA Negeri 1 Tilamuta," Jambura Journal of Educational Chemistry, vol. 11, no. 2, pp. 161–167, 2016.
[20] S. Y. Eskawati and I. G. M. Sanjaya, "Pengembangan E-Book Interaktif pada Materi Sifat Koligatif Sebagai Sumber Belajar Siswa Kelas XII IPA," Unesa Journal of Chemical Education, vol. 1, no. 2, pp. 46–53, 2012. doi:10.26740/ujced.v1n2.p%25p
[21] S. Wijayanti, N. Fadiawati, and L. Tania, "Pengembangan E-BOOK Interaktif Kesetimbangan Kimia Berbasis Representasi Kimia," Jurnal Pendidikan Dan Pembelajaran Kimia, vol. 4, no. 2, pp. 481–492, 2015.
[22] N. Jannah, N. Fadiawati, and L. Tania, "Pengembangan E-book Interaktif Berbasis Fenomena Kehidupan Sehari-hari tentang Pemisahan Campuran," Jurnal Pendidikan Dan Pembelajaran Kimia, vol. 6, no. 1, pp. 186–198, 2017.
[23] U. Hidayanti and I. Rosilawati, "Pengembangan E-book Interaktif Berbasis Representasi Kimia pada Materi Larutan Penyangga," Journal Pendidikan Dan Pembelajaran Kimia, vol. 7, no. 2, 2018.
[24] N. S. Dewi, "Development of Intertextual-Based E-Book on the Concept of Buffer Solution," Jurnal Tadris Kimiya, vol. 7, no. 2, pp. 266–276, 2022.
doi: 10.15575/jtk.v7i2.21235
[25] Zulfahmia, Wiji, and S. Mulyani, "Pengembangan Strategi Pembelajaran Berbasis Intertekstual Dengan Model Visualisasi Pada Konsep Geometri Molekul Untuk Meningkatkan Kemampuan Spasial Siswa," Chimica Didactica Acta, vol. 9, no. 1, pp. 8–16, 2021.
[26] W. R. Borg and M. D. Gall, Educational Research: An Introduction, 5th ed. New York: Longman, 1983.
[27] R. R. Hakke, "Analyzing Change/Gain Scores," Indiana: Indiana University, 2007.
[28] S. Arikunto, Prosedur Penelitian Suatu Pendekatan Praktik, Edisi Revisi. Jakarta: PT. Rineka Cipta, 2013.
[29] S. J. Lee and T. C. Reeves, "A Significant Contributor to the Field of Educational Technology," Educational Technology, vol. 47, no. 6, pp. 56–59, 2007.
[30] A. G. Harrison and D. F. Treagust, "The Particulate Nature of Matter: Challenges in Understanding the Submicroscopic World," in Chemical Education: Towards Research-based Practice, J. K. Gilbert, O. Jong, R. Justi, D. F. Treagust, and J. H. Driel, Eds., Netherlands: Springer, 2002, vol. 17, pp. 189–212.
doi: 10.1007/0-306-47977-X_9
[31] K. K. Gilbert, "Visualization: An Emergent Field of Practice and Enquiry in Science Education," in Visualization: Theory and Practice in Science Education, J. K. Gilbert, M. Reiner, and M. Nakhleh, Eds., Dordrecht: Springer, 2008, pp. 3–24.
doi: 10.1007/978-1-4020-5267-5_1
[32] B. Davidowitz and G. Chittleborough, "Linking the Macroscopic and Sub-microscopic Levels: Diagrams," in Multiple Representations in Chemical Education, J. K. Gilbert and D. Treagust, Eds., Netherlands: Springer, 2009, pp. 169–191.
doi: 10.1007/978-1-4020-8872-8
[33] H. K. Wu, "Linking the Microscopic View of Chemistry to Real-Life Experiences: Intertextuality in a High-School Science Classroom," Science Education, vol. 87, no. 6, pp. 868–891, 2003. doi:10.1002/sce.10090
[34] M. Varelas and C. C. Pappas, "Intertextuality in read-alouds of integrated science-literacy units in urban primary classrooms: Opportunities for the development of thought and language," Cognition and Instruction, vol. 24, no. 2, pp. 211–259, 2006.
doi: 10.1207/s1532690xci2402_2
[35] Sumaya, Penguasaan Konsep dalam Pembelajaran Pakem. Bandung: PT. Remaja Rosda Karya, 2004.
[36] Kemendikbud, Permendikbud Nomor 22 Tahun 2016 Tentang Standar Proses Pendidikan Dan Menengah. Jakarta: Kemendikbud, 2016.
[37] D. F. Treagust, G. Chittleborough, and T. L. Mamiala, "The role of submicroscopic and symbolic representations in chemical explanations," International Journal of Science Education, vol. 25, no. 11, pp. 1353–1368, 2003.
doi: 10.1080/0950069032000070306
[38] H. K. Wu and P. Shah, "Exploring Visuospatial thinking in Chemistry Learning," Science Education, vol. 88, no. 3, pp. 465–492
Refbacks
- There are currently no refbacks.