Chitosan Crosslinking from Clam Shells (Cerithidea obtusa) with Tripolyphosphate for Cadmium (II) Adsorption

Soerja Koesnarpadi, Hajar Anuar, Nanang Tri Widodo, Budi Hastuti, Saptono Hadi

Abstract

The study investigates chitosan crosslinking from clam shells (Cerithidea obtusa) with tripolyphosphate for cadmium (II) adsorption. Chitosan was prepared by deacetylating chitin using 60% NaOH and heating at 140°C for 60 minutes. Chitin was isolated from Cerithidea obtusa shells, an abundant waste in East Kalimantan. Crosslinking of chitosan with tripolyphosphate was synthesized via gelation methods, dissolving 5 g of chitosan in acetic acid and adding 0.1% tripolyphosphate as a crosslinker. The chitosan-tripolyphosphate characterization was conducted using FTIR, XRD, and SEM. FTIR spectra revealed an N-H vibration at 1635 cm−1, NH3+ deformation at 1534 cm−1, C-O stretching at 1072 cm−1, and P-O vibration at 1026.91 cm−1, indicating the presence of tripolyphosphate in chitosan. The XRD pattern showed broad peaks at 19.85° and 23.50°, characteristic of amorphous chitosan-tripolyphosphate. SEM images depicted a flat sheet without pores and a tight surface. Cadmium (II) adsorption on chitosan-tripolyphosphate at an optimum pH of 4 followed a pseudo-second-order kinetic model. It adhered to the Langmuir isotherm model, with a maximum adsorption capacity of 27.8 mg/g. The results demonstrate that chitosan crosslinked with tripolyphosphate effectively for cadmium (II) adsorption.

Keywords

cadmium; chitosan; crosslinking; heavy metal adsorption; tripolyphosphate

Full Text:

PDF

References

[1] M. Noor, F. Fourqoniah, and M. F. Aransyah, "Local government policy analysis in implementing strategic roles of marine and fisheries development in East Kalimantan, Indonesia," AACL Bioflux, vol. 22, no. 1, 2022. [Online]. Available: https://www.bioflux.com.ro/docs/2022. [Accessed: June 24, 2024].

[2] N. T. Popović, V. Lorencin, I. S-Perović, and R. Č-Rakovac, "Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability," Appl. Sci., vol. 13, no. 1, p. 623, 2023. DOI: 10.3390/app13010623.

[3]Y. Mahendra, A.H. Asfar, N.Ainulhaq , I. Pratiwi, I.Quraysin, A. Riyanto, S. N. Fadillah, S. Rohmah, “Pemanfaatan Limbah Cangkang Kerang Sebagai Alternatif Pembuatan Kerajinan Cinderamata Wisata Pantai Gope Karangantu Banten” Jurnal Abdimas Ilmiah Citra Bakti, vol.4, No.4 [Accessed: November 2023]

[4] R. A. F. de Alvarenga, B. M. Galindro, H. C. de Fatima, and S. R. Soares, "The Recycling of Oyster Shells: An Environmental Analysis Using Life Cycle Assessment," J. Environ. Manag., vol. 106, pp. 102–109, 2012. DOI: 10.1016/j.jenvman.2012.04.020.

[5] H. Kobatake and S. Kirihara, "Lowering the Incineration Temperature of Fishery Waste to Optimize the Thermal Decomposition of Shells and Spines," Fish. Sci., vol. 85, pp. 573–579, 2019. DOI: 10.1007/s12562-019-01309-3.

[6] https://www.pupukkaltim.com/id/news-detail/kembangkan-urban-farming-dan-pemanfaatan-kitosan-pupuk-kaltim-bekali-warga-selambai-teknik-vertikultur.

[7] E. Susilowati, S. R. D. Ariani, L. Mahardiani, and L. Izzati, "Synthesis and Characterization Chitosan Film with Silver Nanoparticle Addition as a Multiresistant Antibacterial Material," JKPK (Jurnal Kimia Dan Pendidikan Kimia), vol. 6, no. 3, pp. 371-383, 2021. DOI: 10.15294/jkpk.v6i3.36768.

[8] P. K. Dutta, J. Dutta, and V. S. Tripathi, "Chitin and Chitosan: Chemistry, Properties and Applications," J. Sci. Ind. Res., vol. 63, pp. 20-31, 2004. [Online]. Available: http://nopr.niscair.res.in/handle/123456789/5424. [Accessed: June 24, 2024].

[9] W. Tiyaaboonchai, "Chitosan Nanoparticles as a Promising System for Drug Delivery," Naresuan University Journal, pp. 51-66, 2003. [Online]. Available: http://repository.li.mahidol.ac.th/handle/123456789/1892. [Accessed: June 24, 2024].

[10] Y. Zhang et al., "Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review," Chemosphere, vol. 279, 2021. DOI: 10.1016/j.chemosphere.2021.130914.

[11] K. Kondo, R. Eto, and M. Matsumoto, "Adsorption of Pd and Pt on Chemically Modified Chitosan," Bull. Soc. Sea Water Sci., Jpn., vol. 69, pp. 197-204, 2015. DOI: 10.11457/swsj.69.197.

[12] M. E. A. Ali, M. M. S. Abdoelfadl, A. Seliem, H. F. Khalil, and G. M. Elkady, "Chitosan nanoparticles extracted from shrimp shells: application for removal of Fe(II) and Mn(II) from aqueous phases," Separation Science and Technology, vol. 53, no. 9, 2018. DOI: 10.1080/01496395.2018.1427650.

[13] D. Ariyani et al., "Effect Of Chitosan Concentration On Macroporous Chitosan-TPP Beads Toward Turbidity, Dye Content, and COD of Sasirangan Wastewater," JKPK (Jurnal Kimia Dan Pendidikan Kimia), vol. 6, no. 3, 2021. DOI: 10.15294/jkpk.v6i3.36767.

[14] D. Sikorski, K. G. Jagieła, and Z. Draczyński, "The Kinetics of Chitosan Degradation in Organic Acid Solutions," Marine Drugs, vol. 19, no. 236, pp. 1-16, 2021. DOI: 10.3390/md19050236.

[15] D. R. Bhumkar and D. P. Pokharkar, "Studies on Effect of pH on Crosslinking of Chitosan with Natrium-Tripolyphosphate: A Technical Note," AAPS PharmaSciTech, vol. 7, no. 2, pp. 138-143, 2021. DOI: 10.1208/pt0702138.

[16] D. Koiparambil and J. Shanavas, "Chitosan nanoparticles preparation and applications," Environmental Chemistry Letters, vol. 16, pp. 101–112, 2017. DOI: 10.1007/s10311-017-0683-y.

[17] M. Dogan, "Preparation of chitosan nanoparticles and characterization studies," Cumhuriyet TıpDergisi (Cumhuriyet Medical Journal), vol. 42, no. 3, pp. 344-350, 2020. DOI: 10.7197/cmj.vi.690535.

[18] D. Kavaz et al., "Bleomycin Loaded Magnetic Chitosan Nanoparticles as Multifunctional Nanocarriers," Journal of Bioactive and Compatible Polymers, vol. 25, pp. 305-318, 2010. DOI: 10.1177/0883911510373223.

[19] S. Kumar and J. Koh, "Physiochemical and optical study of chitosan–terephthaldehyde derivative for biomedical applications," Int. J. Biol. Macromol., vol. 51, no. 5, pp. 1167–1172, 2021. DOI: 10.1016/j.ijbiomac.2012.06.022.

[20] A. M. Holban et al., "Highly Biocompatible Magnetite Nanoparticles Functionalized With Chitosan For Improving The Efficiency Of Antibiotics," U.P.B. Sci. Bull., Series B, vol. 78, no. 3, 2016. [Online]. Available: https://www.scientificbulletin.upb.ro/. [Accessed: June 24, 2024].

[21] Z. A. Sutirman et al., "Chitosan-Based Adsorbents For The Removal Of Metal Ions from Aqueous Solutions," Malaysian Journal Of Analytical Sciences, vol. 22, no. 5, pp. 839–850. DOI: 10.17576/mjas-2018-2205-12.

[22] Stefunny, T. A. Zaharah, and Harlia, "Sintesis, Karakterisasi Dan AplikasiKitosandariCangkangUdangWangkang (Penaeus Orientalis) SebagaiKoagulandalamMenurunkan Kadar Bahan Organik Pada Air Gambut," Jurnal Kimia Khatulistiwa, vol. 5, no. 3, pp. 52-59. [Online]. Available: http://jurnalkimia.unmul.ac.id. [Accessed: June 24, 2024].

[23] R. M. Silverstein, B. C. Basser, and T. C. Morril, Spectrometric Identification of Organic Compounds. New York, NY, USA: John Wiley and Sons Inc., 1981.

[24] T. Kusumaningsih, A. Masykur, and U. Arief, "PembuatanKitosan Dari KitinCangkangBekicot (Achatina Fulica)," Biofarmasi, vol. 2, no. 2, pp. 64-68, 2004. DOI: 10.13057/biofar/f020201.

[25] M. N. Arif, Sinardi, and P. Soewondo, "Studi PerbandinganKitosanCangkangKerang Hijau dan CangkangKepitingDenganPembuatanSecaraKimiawiSebagaiKoagulan Alam," Jurnal Teknik Lingkungan, vol. 19, no. 1, pp. 64-74, 2013. DOI: 10.5614/jtl.2013.19.1.6.

[26] I. Silvestro et al., "Preparation and Characterization of TPP-Chitosan Crosslinked Scaffolds for Tissue Engineering," Materials, vol. 13, no. 3577, pp. 1-15, 2020. DOI: 10.3390/ma13163577.

[27] A. F. Tomaz et al., "Ionically Cross-linked Chitosan/Tripolyphosphate Microparticles for the Controlled Delivery of Pyrimethamine," IbnosinaJ. Med. Biomed. Sci., vol. 3, 2011. DOI: 10.4103/1947-489X.210379.

[28] A. D. R. Madjid et al., "PengaruhPenambahanTripolyfosfat Pada Kitosan Beads UntukAdsorpsi Methyl Orange," Jurnal MIPA, vol. 38, no. 2, pp. 144-149, 2015. DOI: 10.15575/jm.v38i2.501.

[29] S. H. Yu et al., "Tripolyphosphate cross-linked macromolecular composites for the growth of shape-and size-controlled apatites," Molecules, vol. 18, pp. 27–40, 2013. DOI: 10.3390/molecules18010027.

[30] M. S. Chiou and H. Y. Li, "Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads," Chemosphere, vol. 50, pp. 1095–1105, 2003. DOI: 10.1016/S0045-6535(02)00636-7.

[31] M. Kurniasih, N. H. Aprilita, and I. Kartini, "Sintesis dan Karakterisasi crosslink kitosandengantripolifosfat pH 3," Molekul, vol. 6, no. 1, pp. 19–24, 2011. DOI: 10.20884/1.jm.2011.6.1.11.

[32] C. Zareie et al., "Preparation of Nanochitosan as an Effective Adsorbent for Removal of Pb (II) From Aqueous Solution," Preprint, 2019. DOI: 10.20944/preprints201910.0206.v1.

[33] S. M. S. Seyedi et al., "Comparative Cadmium Adsorption from Water ByNanochitosan And Chitosan," International Journal Of Engineering And Innovative Technology (IJEIT), vol. 2, no. 9, 2013. DOI: 10.17632/jt78r54knt.1.

[34] A. Sabaruddin and A. R. D. Madjid, "Preparation and Kinetic Studies of Cross-Linked Chitosan Beads Using Dual Crosslinkers of Tripolyphosphate and Epichlorohydrin for Adsorption of Methyl Orange," Scientific World Journal, 2021. DOI: 10.1155/2021/2548120.

[35] R. Laus and V. T. Fávere, "Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin–triphosphate," Bioresource Technology, vol. 102, pp. 8769–8776, 2011. DOI: 10.1016/j.biortech.2011.07.053.

.

Refbacks

  • There are currently no refbacks.