Modification of Polyethylene Glycol and Citric Acid on Palm Fiber Waste Nanofibers on the Adsorption of Violet Crystal Dyes

Lina Mahardiani, Nida Damayanti, Rizki Deva Maharani, Sulistyo Saputro, Endang Susilowati, Wirawan Ciptonugroho, Nanik Dwi Nurhayati

Abstract

This study developed nanofibers derived from sugar palm fiber waste, incorporating citric acid and polyethylene glycol (PEG) modifications to adsorb crystal violet (CV) dye. The synthesis process involved alkalization-acid hydrolysis and bleaching techniques. Subsequent analyses of nanofiber characteristics were conducted using Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX). The efficacy of these modified nanofibers in adsorbing CV was quantitatively measured using an Ultraviolet-Visible (UV-Vis) spectrophotometer. The study successfully synthesized nanofibers from sugar palm fiber waste with modifications: PEG-modified nanofibers (NP 2 and NP 24) and citric acid-modified nanofibers (NS 2 and NS 24). These modifications resulted in nanofibers with a smooth, white texture. FTIR analysis of the samples (N, NP 2, NP 24, NS 2, and NS 24) revealed the presence of functional groups essential for cellulose, specifically -OH, C-H, and C-O groups. The addition of citric acid introduced a new group, C=O, albeit with very weak intensity. PEG modifications were evident from the stretching observed in the -OH groups. SEM analysis confirmed the presence of a layer on the nanofibers, attributed to citric acid (NS 2 and NS 24) and PEG (NP 2 and NP 24). XRD results indicated that the pre-and post-modification nanofibers exhibited a semi-crystalline phase. The adsorption mechanism was predominantly guided by Van der Waals electrostatic interactions between the absorbent material and the adsorbate. Intriguingly, the citric acid and PEG modifications did not significantly alter the adsorption outcomes. The adsorption capacity remained stable over time, as evidenced by measurements of 0, 15, 30, 45, 60, 90, and 120 minutes.

Keywords

Adsorption; Nanofiber; Polyethylene Glycol; Citric Acid, Violet Crystals

Full Text:

PDF

References

[1] R. Hariz, P. Purwanto, “Pengembangan Kawasan Industri Ramah Lingkungan Sebagai Upaya Untuk Menjaga Keseimbangan Ekosistem (Studi Kasus di Taman Industri BSB Semarang),” Al-Hayat: Journal of Biology and Applied Biology, vol. 1, no. 1, pp. 58-65, 2018,

doi: 10.21580/ah.v1i1.2688.

[2] H. Setianto dan H. Fahritsani, “Faktor determinan yang berpengaruh terhadap pencemaran sungai musi kota Palembang,” Media Komunikasi Geografi, vol. 20, no. 2, pp. 186-198, 2019,

doi: 10.23887/mkg.v20i2.21151.

[3] N. Zakaria, R. Rohani, W. H. M. W. Mohtar, R. Purwadi, G. A. Sumampouw, and A. Indarto, “Batik Effluent Treatment and Decolorization—A Review,” Water, vol. 15, no. 7, p. 1339, 2023,

doi: 10.3390/w15071339.

[4] S. Dardouri and J. Sghaier, “Adsorptive removal of methylene blue from aqueous solution using different agricultural wastes as adsorbents,” Korean Journal of Chemical Engineering, vol. 34, no. 4, pp. 1037-1043, 2017,

doi: 10.1007/s11814-017-0008-2.

[5] W. Astuti, T. Sulistyaningsih, M. Maksiola, “Equilibrium and Kinetics of Adsorption of Metil Violet from Aqueous Solutions Using Modified Ceiba pentandra Sawdust,” AsianJOC, vol. 29, no. 1, pp. 133-138, 2017,

doi: 10.14233/ajchem.2017.20158.

[6] J. Rahchamani, H. Z. Mousavi, M. Behzad, “Adsorption of Metil Violet from Aqueous Solution by Polyacrylamide as An Adsorbent: Isotherm and Kinetic Studies,” Desalination, vol. 267, pp. 256-260, 2011,

doi: 10.1016/j.desal.2010.09.036.

[7] D. Setiyawati, I. Simpen, & O. Ratnayani, “Fotodegradasi Zat Warna Limbah Cair Industri Pencelupan Dengan Katalis Zeolit Alam/TiO2 dan Sinar UV,” Cakra Kimia (Indonesian E-Journal of Applied Chemistry), vol. 8, no. 1, pp. 16 – 25, 2020.

Google Scholar

[8] I. Triavia, D. S. Widodo, and A. Haris, "Elektrodekolorisasi Limbah Cair Zat Warna Batik di Kota Solo dengan Elektroda PbO2/Cu," Jurnal Kimia Sains dan Aplikasi, vol. 19, no. 1, pp. 11-14, 2016,

doi: 10.14710/jksa.19.1.11-14.

[9] P. Hidayati, I. Ulfin, dan H. Juwono, “Adsorpsi Zat Warna Remazol Brilliant Blue R Menggunakan Nata de coco: Optimasi Dosis Adsorben dan Waktu Kontak,” Jurnal Sains & Seni, vol. 5, no. 2, 2016,

doi: 10.12962/j23373520.v5i2.18153.

[10] N. Wahyuni, I. H. Silalahi, dan D. Angelina, “Isoterm Adsorpsi Fenol oleh Lempung Alam,” Jurnal Teknologi Lingkungan Lahan Basah, vol 7, no. 1, 2019,

doi: 10.26418/jtllb.v7i1.34363.

[11] J. Shu, R. Liu, H. Wu, Z. Liu, X. Sun, and C. Tao, “Adsorption of methylene blue on modified electrolytic manganese residue: Kinetics, isotherm, thermodynamics and mechanism analysis,” Journal of the Taiwan institute of Chemical Engineers, vol. 82, pp. 351-359, 2018,

doi: 10.1016/j.jtice.2017.11.020.

[12] Buhani, D. Herasari, Suharso, and S. D. Yuwono, “Correlation of ionic imprinting cavity sites on the aminosilica hybrid adsorbent with adsorption rate and capacity of Cd2+ ion in solution,” Oriental Journal of Chemistry, vol. 33, no. 1, pp. 418-429, 2017,

doi: 10.13005/ojc/330149.

[13] U. A. Guler and M. Sarioglu, “Mono and binary componentbiosorption of Cu(II), Ni(II), and Methylene Blue onto raw andpretreated S. cerevisiae: equilibrium and kinetics,” Desalination and Water Treatment, vol. 52, pp. 25-27, 2014,

doi: 10.1080/19443994.2013.810359.

[14] S. Z. Aisyahlika, M. L. Firdaus, and R. Elvia, “Kapasitas Adsorpsi Arang Aktif Cangkang Bintaro (Cerbera odollam) terhadap Zat Warna Sintetis Reactive Red-120 dan Reactive Blue-198”, ALOTROP, J. Pendidik. Dan Ilmu Kim., vol. 2, no. 2, pp. 148–155, 2018,

doi: 10.33369/atp.v2i2.7483.

[15] A. Shofiyani, Y. Rahmiyati, & T. A. Zaharah, “Nanosilika Berbahan Dasar Batu Padas Sebagai Adsorben Zat Warna Sintetis Rhodamin B,” Indonesian Journal of Chemical Science, vol. 9, no. 3, pp. 187-193, 2020,

doi: 10.15294/IJCS.V9I3.42027.

[16] L. Mahardiani and P.W. Septianing, P.S. Lesana, S. Saputro, and S. Pranolo, “Nanofiber Fabrication from Palm Fiber Waste for Sustainable Water Remediation,” Moroccan Journal of Chemistry, vol. 10, no. 2, 2022,

doi: 10.48317/IMIST.PRSM/morjchem-v10i2.32648.

[17] S. Biranje, P. Madiwale, and R. V. Adivarekar, “Electrospinning of chitosan/PVA nanofibrous membrane at ultralow solvent concentration,” Journal of Polymer Research, vol. 24, no. 92, 2017, pp. 1-10,

doi: 10.1007/s10965-017-1238-z.

[18] S. Nadaek, J. M. Hasibuan, L. W. Naibaho, & M. S. Sinaga, “Pemanfaatan Limbah Cangkang Telur Ayam sebagai Adsorben pada pemurnaian Gliserol dengan Metode Asidifikasi dan Adsorpsi,” Jurnal Teknik Kimia, vol. 8, no. 1, 2019,

doi: 10.32734/jtk.v8i1.1872.

[19] R. A. Ilyas, S. M. Sapuan, R. Ibrahim et al., "Sugar palm (Arenga pinnata (Wurmb.) Merr) Cellulosic Fibre Hierarchy: A Comprehensive Approach from Macro to Nano Scale," Journal of Materials Research and Technology, vol. 8, no. 3, pp. 2753-2766, 2019,

doi: 10.1016/j.jmrt.2019.04.011.

[20] F. A. Perdana, M. Baqiya, Mashuri, Triwikantoro and Darminto, “Sintesis Nanopartikel Fe3O4 dengan Template PEG-1000 dan Karakterisasi Sifat Magnetiknya,” Jurnal Material dan Energi Indonesia, vol. 1, no. 1, 2011,

doi: 10.13057/ijap.v5i01.256.

[21] E. Yulianti, R. Mahmudah, A. Ma'rifah, and U. Azmiyani, “Adsorpsi Logam Ni dan Cu pada Limbah Cair Laboratorium Kimia menggunakan Biosorben Batang Jagung Termodifikasi Asam Sitrat,” Journal of Chemistry, vol. 7, no. 1, 2019,

doi: 10.18860/al.v7i1.7933.

[22] E. Yulianti, R. Mahmudah, S. N. Khalifah, A. Prasetyo, A. S. Irviyanti, A. F. Romadhoni, and G. P. Yudisputra, “Modification of corn stalk using citric acid as biosorbent for methylene blue and malachite green,” IOP Conference Series: Earth and Environmental Science, vol. 456, no. 1, p. 456, 2020,

doi: 10.1088/1755-1315/456/1/012015.

[23] S. Zulichatun, J. Jumaeri, and E. Kusumastuti, “Pembuatan Karbon Aktif Ampas Tahu dan Aplikasinya sebagai Adsorben Zat Warna Crystal Violet dan Congo Red,” Indonesian Journal of Chemical Science, vol. 7, no. 3, 2018, pp. 228-235.

doi: 10.15294/ijcs.v7i3.21970.

[24] E. Yulianti, R. Mahmudah, A. Ma'rifah, and U. Azmiyani, “Adsorpsi Logam Ni dan Cu pada Limbah Cair Laboratorium Kimia menggunakan Biosorben Batang Jagung Termodifikasi Asam Sitrat,” Journal of Chemistry, vol. 7, no. 1, 2019,

doi: 10.18860/al.v7i1.7933.

[25] A. D. Wibowo, N. Augiselvia, R. M. Yusuf, K. Sumandar, and Joeliasningsih, “Kajian Pengaruh Konsentrasi Katalis dan Konsentrasi Metanol pada Sintesis Metil Ester Sulfonat,” TECHNOPEX, 2018

Google Scholar

[26] H. Herlina, A. Falahudin, I. Gustian, A. M. Putranto, M. Adfa, and Y. S. S, “Membran Alginat Padina sp. - Polietilen Glikol (AP-PEG): Preparasi, Karakterisasi dan Aplikasinya sebagai Enkapsulan,” Jurnal Penelitian Kimia, vol. 17, no.1, 2021,

doi: 10.20961/alchemy.17.1.41713.63-73.

[27] A. Y. Aryanti, R. Hastuti, and Khabibi, “Pengaruh Penambahan Polietilen Glikol (PEG) pada Selulosa dalam Serbuk Tongkol Jagung (Zea mays) terhadap Adsorpsi Ion Logam Timbal (Pb2+),” Jurnal Kimia Sains dan Aplikasi, vol. 17, no. 1, pp. 1-5, 2014,

doi: 10.14710/jksa.17.1.1-5.

[28] H. N. Izzati and F. N. Munasir, “Sintesis dan Karakterisasi Kekristalasn Nanosilika berbasis Pasir Bancar,” Jurnal Inovasi Fisika Indonesia, vol. 2. no. 3, 2013,

doi: 10.26740/ifi.v2n3.p%25p.

[29] H. Yousefi, V. Azari, and A. Khazaeian, “Direct mechanical production of wood nanofibers from raw wood microparticles with no chemical treatment,” Industrial crops and products, vol. 115, pp. 26-31, 2018,

doi: 10.1016/j.indcrop.2018.02.020.

[30] K. Sari, A. B S. Utomo, P. L. Toruan, and A. Khoryanton, “Kajian Hasil Pengujian X-Ray Diffraction (XRD) Dan Konstanta Dielektrik Membran Polimer Kitosan/PEG4000 dengan Lithium Triflat (LiCF3SO3),” Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, vol. 18, no. 2, pp. 169-174, 2021,

doi: 10.31851/sainmatika.v18i2.6717.

[31] J. Ding, R. Lai, W. Chen, M. He, G. Zhu, S. Huang, and G. Yin, “Environmentally friendly biological nanofibers based on waste feather keratin by electrospinning with citvapor modificationric acid,” Applied Polymer Science, vol. 138, no. 18, 2020,

doi: 10.1002/app.50348.

[32] L. D. Nurfitriningsih, D. Purwonugroho, and M. M. Khunur, “Modifikasi Gugus Aktif Permukaan Biomassa Azolla microphylla melalui Reaksi Ekterifikasi dengan Asam Sitrat,” Kimia Student Journal, vol. 2, no 2, pp. 527-533, 2014.

Google Scholar

[33] R. Zein, N. Wardana, Refilda, and H. Aziz, “Kulit Salak sebagai Biosorben Potensial untuk Pengolahan Timbal(II) dan Cadmium(II) dalam Larutan,” Chemica et Natura Acta, vol. 6, no. 2, pp. 56-64, 2018,

doi: 10.24198/cna.v6.n2.17857.

[34] A. B. Baunsele, E. G. Boelan, A. M. Kopon, M. M. Taek, G. D. Tukan, and H. Missa, “Penggunaan Sabut Kelapa Teraktivasi NaOH sebagai Adsorben Metilen Biru,” Jurnal Riset Kimia, vol. 9, no. 1, pp. 43-54, 2023,

doi: 10.22487/kovalen.2023.v9.i1.16274.

[35] T. Huda, and T. K. Yulitaningtyas, Kajian Adsorpsi Methylene Blue Menggunakan Selulosa dari Alang-Alang. Indonesian Journal of Chemical Analysis, vol. 1, no. 1, pp. 9-19, 2018,

doi: 10.20885/ijca.vol1.iss1.art2.

[36] S. Sultana, K. Islam, Md. A. Hasan, H. M. J. Khan, M. A. R. Khan, A. Deb, Md. Al Raihan, Md. W. Rahman, “Adsorption of crystal violet dye by coconut husk powder: Isotherm, kinetics and thermodynamics perspectives,” Environmental Nanotechnology, Monitoring and Management, vol. 17, pp. 100651, 2022,

doi: 10.1016/j.enmm.2022.100651.

[37] M. Gayathiri, T. Pulingam, K. T. Lee, A. T. Mohd Din, A. Kosugi, K. Sudesh, “Sustainable oil palm trunk fibre based activated carbon for the adsorption of methylene blue,” Scientific Reports, vol. 13, pp 22137, 2023,

doi: 10.1038/s41598-023-49079-0.

Refbacks

  • There are currently no refbacks.