Membran Alginat Padina sp. - Polietilen Glikol (AP-PEG): Preparasi, Karakterisasi dan Aplikasinya sebagai Enkapsulan

Herlina Herlina, Aswin Falahudin, Irfan Gustian, Agus Martono H. Putranto, Morina Adfa, Salprima Yudha S

Abstract

Pengembangan penelitian tentang material berbasiskan sumber daya alam lokal dan dapat diperbaharui terus dikembangkan akhir-akhir ini. Hal tersebut didasari adanya kebutuhan material baru dengan karakteristik yang lebih menguntungkan dan dapat digunakan pada aplikasi yang spesifik. Penelitian ini bertujuan untuk mempelajari preparasi membran alginat-polietilen glikol (AP-PEG) dan aplikasinya sebagai enkapsulan. Alginat yang digunakan adalah hasil ekstraksi dari rumput laut cokelat Padina sp. Dengan metode maserasi jalur asam alginat. Preparasi membrane alginat Padina sp.-polietilen glikol (AP-PEG) dilakukan dengan perbandingan PEG-AP = 1:5; 1:10; 1:15; 0:1 (b/b). Analisis gugus fungsi terhadap seluruh membran yang dihasilkan, menunjukkan bahwa membran AP-PEG yang dihasilkan diprediksi sebagai hasil blending secara fisika karena tidak ada gugus fungsi baru yang terbentuk. Membran dengan perbandingan berat PEG-AP=1:15 memiliki karakteristik terbaik dengan persentase swelling sebesar 1465,5%, stress sebesar 14,588 MPa, strain 0,07 dan Modulus Young sebesar 193,13 MPa. Hasil analisis morfologi menunjukkan bahwa banyak rongga ditemukan pada membrane tersebut. Hasil uji disolusi terhadap membrane tersebut menunjukkan bahwa, pada pH 1,2 membran tersebut dapat melepaskan vitamin C sebesar 78,12% selama 60 menit dan tidak mengalami cracking. Di sisi lain, pada pH 7,2 membran tersebut dapat melepaskan vitamin C sebesar 83,54% dan cracking terjadi dalam waktu 12 menit. Hasil penelitian ini menunjukkan bahwa komposit AP-PEG dapat dibuat dari rumput laut coklat dan memiliki kemampuan sebagai enkapsulan.  

 

Alginate Padina sp.-Polyethylene Glycol (AP-PEG) Membranes: Preparation, Characterization and Their Application as Encapsulant. The development of research on materials based on local and renewable natural resources has been continuously being developed recently. This is based on the need for new materials with more favorable characteristics and can be used in specific applications. This research aims to study the synthesis of alginate-polyethylene glycol (AP-PEG) membranes and their application as an encapsulant. The alginate was extracted from the brown seaweed Padina sp. by maceration method using alginic acid pathway. Alginate Padina sp.-polyethylene glycol (AP-PEG) alginate membrane was prepared with a ratio of PEG:AP = 1: 5, 1:10, 1:15 and 0:1 (w/w). The functional group analysis showed that the resulting AP-PEG membranes were predicted as a result of physical blending due to no new functional groups are formed. The membrane with a weight ratio of PEG:AP = 1:15 had the best characteristics, with a percentage of swelling of 1465.5%, stress of 14.588 MPa, 0.07 strain, and Young Modulus of 193.13 MPa. Morphological analysis showed that the membrane obtained had many cavities. The dissolution test showed that the AP-PEG membrane was able to release vitamin C of 78.12% for 60 minutes at pH 1.2 and no cracking was observed, while at pH 7.2 the membrane was able to distribute vitamin C by 83.54% and cracking occurs within 12 minutes. The results of this study indicate that AP-PEG composites can be made from brown seaweed and have good encapsulant capabilities.

Keywords

enkapsulan; membran; natrium alginat; Padina sp.; polietilen glikol.

Full Text:

PDF

References

Anward, G., Hidayat, Y., Rokhati, N., 2013. Pengaruh Konsentrasi Serta Penambahan Gliserol Terhadap Karakteristik Film Alginat dan Kitosan. Jurnal Teknologi Kimia dan Industri, 2(3), 51-56.

Arianto, A., Bangun, H., Harahap, U., and Ilyas, S., 2014. The Comparison of Swelling, Mucoadhesive and Release of Ranitidine from Spherical Matrices of Alginate, Chitosan, Alginate-Chitosan and Calsium Alginate-Chitosan. International Journal of PharmTech Research, 6(7), 2054–2063.

Daberte, I., Barene, I., Rubens, J., Daugavietis, M., and Sazhenova, N., 2011. Stability of Soft Gelatin Capsules Containing Thick Extract of Pine Needles. Medicina (Kaunas), 47(Suppl 2), 71–77.

Davidovich-Pinhas, M., and Bianco-Peled, H.,2011. Physical and Structural Characteristics of Acrylated Poly (Ethylene Glycol)–Alginate Conjugates. Acta Biomaterialia, 7(7), 2817–2825.https://doi.org/10.1016/j.actbio.2011.04.001.

Degen, P., Leick, S., Siedenbiedel, F.,Rehage, H.,2012. Magnetic Switchable Alginate Beads. Colloid Polymer Science, 290(2), 97–106. https://doi.org/10.1007/s00396-011-2524-7.

Diharningrum, I. M., and Husni, A. 2018. Acid and Calsium Alginate Extraction Method Affected the Quality of Alginate from Brown Seaweed Sargassum hystrix J. Agardh. Jurnal Pengolahan Hasil Perikanan Indonesia, 21 (3), 532-542.https://doi.org/10.17844/jphpi.v21i3.24737.

Gohel, M.C., Mehta, P.R., Dave, R.K., and Bariya, N.H., 2004. A More Relevant Dissolution Method for Evaluation of Floating Drug Delivery System. Dissolution Technology, 11(9), 22–25.dx.doi.org/10.14227/DT110404P22.

Hamrun, N., and Rachman, S.A., 2016. Measuring Sodium Alginate Content of Brown algae Species Padina sp. as The Basic Matter for Making Dental Impression Material (Irreversible Hydrocolloid Impression Material). Journal of Dentomaxilofacial Science, 1(2), 9–13. https://doi.org/10.15562/jdmfs.v1i2.11.

Husni, A., Subaryono, Pranoto, Y., Tazwir, and Ustadi., 2012. Pengembangan Metode Ekstraksi Alginat dari Rumput Laut Sargassum sp. Sebagai Bahan Pengental. Agritech, 32(1), 1–8.https://doi.org/10.22146/agritech.9649.

Kanakasabai, S., 2005.Alginate Strings and Their Applications in Spinal Cord Regeneration. Thesis, Drexel University College of Medicine, Drexe.

Kevadiya, B.D., Patel, H.A., Joshi, G.V., Abdi, S.H.R., and Bajaj, H.C.,2010. Montmorillonite-Alginate Composites as a Drug Delivery System: Intercalation and In vitro Release of Diclofenac sodium. Indian Journal of Pharmaceutical Sciences, (12), 732–737.doi: 10.4103/0250-474X.84582.

Khalil, H.P.S.A., Saurabh, C.K., Tye, Y. ., Lai, T.K., Easa, A.M., Rosamah, E., and Benerje, A., 2017. Seaweed Based Sustainable Films and Composites for Food and Pharmaceutical Applications : A review. Renewable and Sustainable Energy Reviews, 77(4), 353–362. https://doi.org/10.1016/j.rser.2017.04.025.

Knop, K., Hoogenboom, R., Fischer, D., and Schubert, U.,2010. Poly (Ethylene Glycol) in Drug Delivery : Pros and Cons as Well as Potential Alternatives. Angewandte Chemie International Edition, 49(36), 6288–6308. https://doi.org/10.1002/anie.200902672.

Ku, M.S., Lu, Q., Li, W., and Chen, Y., 2011. Performance Qualification of A New Hypromellose Capsule: Part II. Disintegration and Dissolution Comparison Between Two Types of Hypromellose Capsules. International Journal of Pharmaceutics, 416(1), 16–24. https://doi.org/10.1016/j.ijpharm.2011.02.048.

Martien, R., Adhyatmika, Irianto, I.D.K., Farida, V., and Sari, D.P.,2012. Perkembangan Teknologi Nanopartikel dalam Sistem Penghantaran Obat. Majalah Farmaseutik, 8(1), 133–144.https://doi.org/10.22146/farmaseutik.v8i1.24067.

Mohammed, A., Rivers, A., Stuckey, D. D., Ward, K., 2020. Alginate extraction from Sargassum seaweed in the Caribbean region : Optimization using response surface methodology. Carbohydrate Polymers, 245, 1-8. https ://doi.org/10.1016/j.carbpol.2020.116419.

Park, S., Lih, E., Park, K., Joung, Y.K., and Han, D.K.,2017. Biopolymer-Based Functional Composites for Medical Applications. Progress in Polymer Science, 68, 77–105. https://doi.org/10.1016/j.progpolymsci.2016.12.003.

Patil, P., Chanvanke, D., and Wagh, M., 2012. A Review on Ionotropic Gelation Method: Novel Approach for Controlled Gastroretentive Gelispheres.International Journal of Pharmaceutical Sciences, 4(4), 27-32.

Pereira, R., Carvalho, A., Vaz, D.C., Gil, M.H., Mendes, A., and Bártolo, P.,2012. Development of Novel Alginate Based Hydrogel Films for Wound Healing Applications. International Journal of Biological Macromolecules, 52(10), 221–230. https://doi.org/10.1016/j.ijbiomac.2012.09.031.

Polu, A.R., and Kumar, R.,2011. Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes. E-Journal of Chemistry, 8(1), 347–353.https://doi.org/10.1155/2011/628790.

Shargel, l., and Yu, A.B.C., 1998. Biofarmasetika dan Farmakokinetika Terapan (Edisi Ke-2). Surabaya: Airlangga University Press.

Sitompul, A.J.W.S., and Zubaidah, E.,2017. The Influence of The Type and Concentration of Plasticizer toward The Physical Characteristic of Edible Film from Palm Fruit (Arenga pinnata). Jurnal Pangan dan Agroindustri, 5(1), 13–25.

Sosnik, A., 2014. Alginate Particles as Platform for Drug Delivery by the Oral Route : State-of-the-Art. ISRN Pharmaceutics, (2014), 1–17. doi: 10.1155/2014/926157.

Wafiroh, S., Suyanto, S., and Yuliana, Y.,2016. Pembuatan dan Karakterisasi Membran Komposit Kitosan-Sodium Alginat Terfosforilasi Sebagai Proton Exchange Membrane Fuel Cell (PEMFC). Journal Kimia Riset, 1(1), 14–21.

Wang, Q., Zhang, N., Hu, X., Yang, J., and Du, Y.,2007. Alginate/Polyethylene Glycol Blendfibers and Their Properties for Drug Controlled Release. Journal of Biomedicla Materials, 82(1), 122–127.https://doi.org/10.1002/jbm.a.31075.

Refbacks

  • There are currently no refbacks.