Comparison of Air Contact And Distilled Water Distribution Method in The Conversion of Cao to Ca(OH)2 As A Precursor Hydroxyapatite Synthesis

Firnanelty Firnanelty, Andi Nur Fitriani Abubakar, Anas Qurniawan, M. A. Syam

Abstract

Eggshells containing CaCO3 have potential as bioceramics for several tissue engineering applications. The content of CaCO3 converted into Ca(OH)2 can be used as a precursor to implant material. The purpose of the study was to compare two methods of converting CaO into Ca(OH)2 as the primary material for making hydroxyapatite. The method used is direct contact with air and dissolution with water. Hydroxyapatite synthesis using Ca(OH)2 is calcined from CaCOwith a sintering temperature of 900 °C. The result of calcination is in the form of CaO. The stages of obtaining Ca(OH)2 by converting CaO using two methods, namely direct contact with air and dissolution with water. The XRD characterization results obtained that Ca(OH)2 results from direct contact with air show the formation of phase (portlandite), which is characterized by its presence at the highest typical 2θ angles = 18.18°, 28.68°, 34.30°, 47.40°, 50.92°, 54.16°, and 62.62°. The XRD Ca(OH)2 pattern with the distilled water distribution process shows the formation of a phase (portlandite) characterized by its presence at angles of 2θ = 18.18°, 28.68°, 34.30°, 47.40°, 50.92°, 54.16°, and 62.62 °. The results of FTIR Ca(OH)2 characterization of air contact and water dissolution showed strong O-H functional groups at wave numbers 3643 cm-1 and 3642 cm-1, C-O groups at 1487 cm-1 and 1483 cm-1. This suggests that both methods can convert CaO to Ca(OH)2, which synthesizes hydroxyapatite. The hydroxyapatite characterization results obtained have met the standard.

Keywords

eggshell; conversion; air; water; hydroxyapatite

Full Text:

PDF

References

[1] D. Yong et al., “Development and Analysis of a Hydroxyapatite Supplemented Calcium Silicate Cement for Endodontic Treatment,” Materials, vol. 15, no. 3, Feb. 2022,

doi: 10.3390/ma15031176.

[2] V. A. Apalangya, V. K. Rangari, B. J. Tiimob, S. Jeelani, and T. Samuel, “Eggshell Based Nano-Engineered Hydroxyapatite and Poly(lactic) Acid Electrospun Fibers as Potential Tissue Scaffold,” Int J Biomater, vol. 2019, 2019,

doi: 10.1155/2019/6762575.

[3] J. Gago and Y. Dala Ngapa, “Pemanfataan Cangkang Telur Ayam Sebagai Material Dasar Dalam Sintesis Hidroksiapatit Dengan Metode Presipitasi Basah,” Cakra Kimia (Indonesian E-Journal of Applied Chemistry), vol. 8 no. 1, 2021.

Google Scholar

[4] J. Kariya, J. Ryu, and Y. Kato, “Reaction performance of calcium hydroxide and expanded graphite composites for chemical heat storage applications,” ISIJ International, vol. 55, no. 2, pp. 457–463, 2015,

doi: 10.2355/isijinternational.55.457.

[5] A. Shofiyani and M. Agus Wibowo, “Ekstraksi Kalsium Karbonat (CaCO3) dari Bahan Dasar Cangkang Kerang Ale-Ale (Meretrix [Meretrix]) pada Temperatur Kalsinasi 500 °C,” vol. 8, no. 1, pp. 54–58, 2019.

Google Scholar

[6] D. Azis, O. Jumadi, and M. Wiharto, “Analisis Kandungan Timbal (Pb) pada Daun Tanaman Teh (Camellia sinensis O .K) dan Tanah Perkebunan Teh yang Berada di Kawasan Puncak Malino,” Jurnal Sainsmart, vol. I, no. 1, p. 14, 2012,

doi: 10.35580/sainsmat114502012.

[7] D. Komala et al., “Uji Sitotoksisitas Hidroksiapatit Cangkang Telur Ayam Ras (Gallus gallus) terhadap Sel Fibroblas Ligamen Periodontal Manusia,” Stogmatognatic, vol 19, no 1, 2022,

doi: 10.19184/stoma.v19i1.30702.

[8] A. Zahara, G. Bhernama, and M. R. Harahap, “Literature Review: Pengaruh Suhu Kalsinasi Terhadap Sintesis Katalis Heterogen CaO Dari Cangkang Telur,” AMINA, vol. 2, no. 2, 2020,

doi: 10.22373/amina.v2i2.774.

[9] K. U. Henggu, B. Ibrahim, and P. Suptijah, “Hidroksiapatit dari Cangkang Sotong Sebagai Sediaan Biomaterial Perancah Tulang,” JPHPI, vol 22, no 1, 2019,

doi: 10.17844/jphpi.v22i1.25869.

[10] E. Elline and K. Ismiyatin, “Nanohydroxiapatite Using Chicken Eggshell Waste and Its Characterization,” Malaysian Journal of Medicine and Health Science, 2021.

Google Scholar

[11] I. A. Suci and Y. Dala Ngapa, “Sintesis dan Karakterisasi Hidroksiapatit (Hap) dari Cangkang Kerang Ale-Ale Menggunakan Metode Presipitasi Double Stirring,” Cakra Kimia (Indonesian E-Journal of Applied Chemistry), vol 8 no 2, 2020.

Google Scholar

[12] M. K. dos Santos Horta et al., “Nanostructured Hydroxyapatite from Hen´s Eggshells Using Sucrose as a Template,” Materials Research, vol. 23, no. 6, 2020,

doi: 10.1590/1980-5373-MR-2020-0266.

[13] M. Sirait, K. Sinulingga, N. Siregar, and Y. F. Damanik, “Synthesis and characterization of hydroxyapatite from broiler eggshell,” in AIP Conference Proceedings, Mar. 2020,

doi: 10.1063/5.0003043.

[14] M. Khalid et al., “Synthesis and characterizations of hydroxyapatite using precursor extracted from chicken egg shell waste,” Biointerface Res Appl Chem, vol. 12, no. 4, pp. 5663–5671, Aug. 2022,

doi: 10.33263/BRIAC124.56635671.

[15] C. Charlena, A. Maddu, and T. Hidayat, “Synthesis and Characterization of Hydroxyapatite from Green Mussel Shell with Sol-Gel Method,” Jurnal Kimia Valensi, vol. 8, no. 2, pp. 269–279, Nov. 2022,

doi: 10.15408/jkv.v8i2.27494.

[16] Firnanelty, S. Sugiarti, and Charlena, “Synthesis of HAp-Chitosan-PVA Composite as Injectable Bone Substitute Material,” Rasayan Journal of Chemistry, vol. 11, pp. 570–576, 2017,

doi: 10.7324/RJC.2017.1021465.

[17] S. Tlili, S. Bouyegh, K. Labiod, N. Traiaia, and M. Hassani, “Synthesis and characterization of hydroxyapatite powder derived of eggshell by precipitation method,” Proceedings of the International Conference on Industrial Engineering and Operations Management Monterrey, pp. 1550–1557, 2021.

Google Scholar

[18] Marwan and E. Indarti, “Hydrated Calcined Cyrtopleura costata Seashells as an Effective Solid Catalyst for Microwave-Assisted Preparation of Palm Oil Biodiesel,” Energy Convers. Manag., vol. 117, pp. 319–325,

doi: 10.1016/j.enconman.2016.03.030, 2016.

[19] X. Lu et al., “Effects of Grain Size and Temperature on Mechanical Properties of Nano-Polycrystalline Nickel-Cobalt Alloy,” Integr. Med. Res., vol. 9, no. 6, pp. 13161–13173, 2020,

doi: 10.1016/j.jmrt.2020.09.060.

[20] Y. Liu and M. Wei, “Development of acetylcholinesterase biosensor based on platinum e carbon aerogels composite for determination of organophosphorus pesticides,” Food Control, vol. 36, no. 1, pp. 49–54, 2014,

doi: 10.1016/j.foodcont.2013.08.005.

[21] A. R. Noviyanti, H. Haryono, R. Pandu, and D. R. Eddy, “Cangkang Telur Ayam sebagai Sumber Kalsium dalam Pembuatan Hidroksiapatit untuk Aplikasi Graft Tulang,” Chimica et Natura Acta, vol. 5, no. 3, p. 107, Dec. 2017,

doi: 10.24198/cna.v5.n3.16057.

[22] A. R. Gintu, E. B. E. Kristiyani, Y. Martono, “The Syntehsis and Physicochemical Characterization of Hydroxyapatite (HAP) from Local Duck Eggshells,” JKPK (Jurnal Kimia dan Pendidikan Kimia), vol 7, no 1, 2022,

doi: 10.20961/jkpk.v7i1.55429.

[23] C. Suresh Kumar, K. Dhanaraj, R. M. Vimalathithan, P. Ilaiyaraja, and G. Suresh, “Hydroxyapatite for bone related applications derived from sea shell waste by simple precipitation method,” Journal of Asian Ceramic Societies, vol. 8, no. 2, pp. 416–429, Apr. 2020,

doi: 10.1080/21870764.2020.1749373.

[24] L. S. Taji, D. E. Wiyono, A. D. Karisma, A. Surono, E. O. Ningrum, “Hydroxyapatite based Material: Natural Resources, Synthesis method, 3D Print Filament Fabrication, and Filament Filler”, IPTEK, The Journal of Engineering, vol 8, no 1, 2022,

doi: 10.12962/j23378557.v8i1.a12830.

Refbacks

  • There are currently no refbacks.