Study on Varied Bagasse Fiber and Epoxy Resin Compositions with Rice Bran Filler to Biocomposite Characteristics
Abstract
Natural fibers, with environmental, economic, and cost advantages, are highly sought-after for biocomposite materials. In the present study, the biocomposite samples of epoxy resin (as a matrix), bagasse fiber (as reinforcement), and rice bran (as a filler) were prepared. Tensile strength, strain, and Young's modulus will be the parameters concerning which the quality of the biocomposite can be tested. On the one hand, bagasse fiber is to be a strength enhancer in the resulting biocomposite. On the other hand, rice bran may increase the biocomposite's density. The process research comprises fiber yarn from milled bagasse, alkalized fiber with KMnO4, specimen printing process, and analysis. All the fibers were treated by soaking them in 3 grams of KMnO4 solution for 30 and 45 minutes. The fiber is drained in an oven at 50 °C for ±1.5 hours. The printed fiber onto a specimen mold was printed with a mixture of epoxy resin and rice bran (1:1 w/w) and left for one day. Variation in the fiber mass was at 3, 4, and 5 grams. The sizes of the specimens were similar to the size of the mold according to ASTM D-638 type IV. Then, the fibers were removed from the mold and tested for tensile strength, strain, and Young's modulus. The results show that the greater the fiber mass, the greater the tensile strength value. These findings indicate that the tensile strength was optimized after soaking for 45 minutes with 5-gram fiber weight, which resulted in the tensile strength of 26.32±0.25 MPa, strain of 9.65±0.14%, Young's Modulus of 3.29±0.05 MPa, and water absorption of 41.99%.
Keywords
Full Text:
PDFReferences
[1] Alokika, Anu, A. Kumar, V. Kumar, and B. Singh, “Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective,” Int. J. Biol. Macromol., vol. 169, pp. 564–582, 2021,
doi: 10.1016/j.ijbiomac.2020.12.175.
[2] M. A. Mahmud and F. R. Anannya, “Sugarcane bagasse - A source of cellulosic fiber for diverse applications,” Heliyon, vol. 7, no. 8, p. e07771, 2021, doi: 10.1016/j.heliyon.2021.e07771.
[3] T. Hou, N. Chen, S. Tong, B. Li, Q. He, and C. Feng, “Enhancement of rice bran as carbon and microbial sources on the nitrate removal from groundwater,” Biochem. Eng. J., vol. 148, pp. 185–194, 2019,
doi: 10.1016/j.bej.2018.07.010.
[4] M. Nagalakshmaiah et al., “Biocomposites: Present trends and challenges for the future,” Green Compos. Automot. Appl., pp. 197–215, 2018,
doi:10.1016/B978-0-08-102177-4.00009-4.
[5] H. Bisaria, M. K. Gupta, P. Shandilya, and R. K. Srivastava, “Effect of Fibre Length on Mechanical Properties of Randomly Oriented Short Jute Fibre Reinforced Epoxy Composite,” Mater. Today Proc., vol. 2, no. 4–5, pp. 1193–1199, 2015,
doi: 10.1016/j.matpr.2015.07.031.
[6] M. K. Gupta, “Effect of frequencies on dynamic mechanical properties of hybrid jute/sisal fibre reinforced epoxy composite,” Adv. Mater. Process. Technol., vol. 3, no. 4, pp. 651–664, 2017,
doi: 10.1080/2374068X.2017.1365443.
[7] K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 98–112, 2016,
doi:10.1016/j.compositesa.2015.08.038.
[8] P. Lokesh, T. S. A. Surya Kumari, R. Gopi, and G. B. Loganathan, “A study on mechanical properties of bamboo fiber reinforced polymer composite,” Mater. Today Proc., vol. 22, pp. 897–903, 2020,
doi: 10.1016/j.matpr.2019.11.100.
[9] M. Arsyad, “Sodium Hydroxide and Potassium Permanganate Treatment on Mechanical Properties of Coconut Fibers,” IOP Conf. Ser. Mater. Sci. Eng., vol. 619, no. 1, 2019,
doi: 10.1088/1757-899X/619/1/012011.
[10] M. Arsyad and R. Soenoko, “The effects of sodium hydroxide and potassium permanganate treatment on roughness of coconut fiber surface,” MATEC Web Conf., vol. 204, 2018,
doi: 10.1051/matecconf/201820405004.
[11] M. Pouriman, A. R. Caparanga, M. Ebrahimi, and A. Dahresobh, “Characterization of Untreated and Alkaline-Treated Salago Fibers (Genus Wikstroemia Spp.),” J. Nat. Fibers, vol. 15, no. 2, pp. 296–307, 2018, doi: 10.1080/15440478.2017.1329105.
[12] P. Manimaran, M. R. Sanjay, P. Senthamaraikannan, M. Jawaid, S. S. Saravanakumar, and R. George, “Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications,” J. Nat. Fibers, vol. 16, no. 5, pp. 768–780, 2019,
doi: 10.1080/15440478.2018.1434851.
[13] S. G. Jebadurai, R. E. Raj, V. S. Sreenivasan, and J. S. Binoj, Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem, vol. 207. Elsevier Ltd., 2019.
[14] M. Maache, A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne, “Characterization of a novel natural cellulosic fiber from Juncus effusus L.,” Carbohydr. Polym., vol. 171, pp. 163–172, 2017,
doi: 10.1016/j.carbpol.2017.04.096.
[15] A. Porras, A. Maranon, and I. A. Ashcroft, “Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials,” Compos. Part B Eng., vol. 74, pp. 66–73, 2015,
doi:10.1016/j.compositesb.2014.12.033.
[16] N. Shanmugasundaram, I. Rajendran, and T. Ramkumar, “Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites,” Carbohydr. Polym., vol. 195, pp. 566–575, 2018, doi: 10.1016/j.carbpol.2018.04.127.
[17] V. P. Arthanarieswaran, A. Kumaravel, and S. S. Saravanakumar, “Characterization of New Natural Cellulosic Fiber from Acacia leucophloea Bark,” Int. J. Polym. Anal. Charact., vol. 20, no. 4, pp. 367–376, 2015,
doi: 10.1080/1023666X.2015.1018737.
[18] P. Manimaran, M. Prithiviraj, S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Senthamaraikannan, “Physicochemical, tensile, and thermal characterization of new natural cellulosic fibers from the stems of Sida cordifolia,” J. Nat. Fibers, vol. 15, no. 6, pp. 860–869, 2018,
doi: 10.1080/15440478.2017.1376301.
[19] D. Laouchedi, B. Bezzazi, and C. Aribi, “Elaboration and characterization of composite material based on epoxy resin and clay fillers,” J. Appl. Res. Technol., vol. 15, no. 2, pp. 190–204, 2017,
doi: 10.1016/j.jart.2017.01.005.
[20] O. Dagdag et al., “Highly durable macromolecular epoxy resin as anticorrosive coating material for carbon steel in 3% NaCl: Computational supported experimental studies,” J. Appl. Polym. Sci., vol. 137, no. 34, pp. 1–12, 2020,
doi: 10.1002/app.49003.
[21] Z. B. Shao, M. X. Zhang, Y. Li, Y. Han, L. Ren, and C. Deng, “A novel multi-functional polymeric curing agent: Synthesis, characterization, and its epoxy resin with simultaneous excellent flame retardance and transparency,” Chem. Eng. J., vol. 345, pp. 471–482, 2018, doi: 10.1016/j.cej.2018.03.142.
[22] M. Zahid Rayaz Khan and S. K. Srivastava, “Development, Characterization and Application Potential of Bio-composites: A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 404, no. 1, pp. 0–7, 2018,
doi: 10.1088/1757-899X/404/1/012028.
[23] S. A. Hallad et al., “Graphene Reinforced Natural Fiber Nanocomposites for Structural Applications,” IOP Conf. Ser. Mater. Sci. Eng., vol. 376, no. 1, 2018,
doi: 10.1088/1757-899X/376/1/012072.
[24] R. Z. Khoo, W. S. Chow, and H. Ismail, “Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review,” Cellulose, vol. 25, no. 8, pp. 4303–4330, 2018,
doi: 10.1007/s10570-018-1879-z.
[25] J. R. Kesuma Nirvana, E. Budiyati, and A. Mulyaningtyas, “Synthesis and Characterization of Gambas (Luffa acutangula) Peel–Based Bioplastic Reinforced by Silica,” J. Kim. Sains dan Apl., vol. 26, no. 4, pp. 151–159, 2023, doi: 10.14710/jksa.26.4.151-159.
[26] A. Juniarto, A. D. Anggono, T. W. B. Riyadi, and P. Partono, “Pemanfaatan Limbah Plastik Polipropilen sebagai Material Komposit Plastik Biodegradable dengan Penambahan Serbuk Ampas Aren,” 2018.
[27] E. Budiyati, T. A. Sucipto, and R. N. Hidayati, “Composite of the teak wood sawdust and banana stem fiber,” AIP Conf. Proc., vol. 2370, pp. 1–7, 2021, doi: 10.1063/5.0062489.
[28] A. B. M. Supian et al., “Mechanical and physical performance of date palm/bamboo fibre reinforced epoxy hybrid composites,” J. Mater. Res. Technol., vol. 15, pp. 1330–1341, 2021, doi: 10.1016/j.jmrt.2021.08.115.
[29] M. K. Marichelvam et al., “A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: An experimental approach,” Polym. Compos., vol. 42, no. 1, pp. 512–521, 2021,
doi: 10.1002/pc.25843.
[30] (2011) B. Maryanti, “Pengaruh Alkalisasi Komposit Serat Kelapa-Poliester Terhadap Kekuatan Tarik,” Rekayasa Mesin, vol. 2, no. 2, pp. 123–129, 2011.
[31] G. Goud and R. N. Rao, “Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites,” Bull. Mater. Sci., vol. 34, no. 7, pp. 1575–1581, 2011,
doi: 10.1007/s12034-011-0361-4.
[32] V. Vidyashri, H. Lewis, P. Narayanasamy, G. T. Mahesha, and K. S. Bhat, “Preparation of chemically treated sugarcane bagasse fiber reinforced epoxy composites and their characterization,” Cogent Eng., vol. 6, no. 1, 2019,
doi: 10.1080/23311916.2019.1708644.
[33] S. F. A. Shah, B. Chen, S. Y. Oderji, M. Aminul Haque, and M. R. Ahmad, “Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar,” Constr. Build. Mater., vol. 243, pp. 118221, 2020,
doi:10.1016/j.conbuildmat.2020.118221.
[34] S. H. Siddique, S. Faisal, M. Ali, and R. H. Gong, “Optimization of process variables for tensile properties of bagasse fiber-reinforced composites using response surface methodology,” Polym. Polym. Compos., vol. 29, no. 8, pp. 1304–1312, 2021,
doi: 10.1177/0967391120968432.
[35] S.-C. Shi, P. K. Mandal, and T.-H. Chen, “Mechanical Properties and Tribological Behavior of MoS2-Enhanced Cellulose-Based Biocomposites for Food Packaging,” Polymers (Basel)., vol. 29, no. 11, pp: 1838, 2021,
doi: 10.3390/polym13111838.
[36] S. Gurusideswar, N. Srinivasan, R. Velmurugan, and N. K. Gupta, “Tensile Response of Epoxy and Glass/Epoxy Composites at Low and Medium Strain Rate Regimes,” Procedia Eng., vol. 173, pp. 686–693, 2017,
doi: 10.1016/j.proeng.2016.12.148.
[37] A. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, “Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch,” Fibers Polym., vol. 18, no. 1, pp. 162–171, 2017,
doi: 10.1007/s12221-017-6251-7.
[38] K. Pielichowski and J. Njuguna, Krzysztof Pielichowski and James Njuguna: Thermal Degradation of Polymeric Materials, vol. 26, no. 2. 2005.
[39] R. Ianchis et al., “Novel hydrogel-advanced modified clay nanocomposites as possible vehicles for drug delivery and controlled release,” Nanomaterials, vol. 7, no. 12, 2017,
doi: 10.3390/nano7120443.
Refbacks
- There are currently no refbacks.