Synthesis and Photocatalytic Activity Test of Bi-TiO2 toward Humic Acid Degradation under Visible Light Irradiation

Efraime Caroline Dien, Anthoni Batahan Aritonang, Gusrizal Gusrizal

Abstract

Humic acid (HA) in water can harm humans if it is regularly used or consumed. HA causes problems in the water, such as color, taste, and the formation of metal complexes. Therefore, it is necessary to degrade HA to address these problems. In this study, HA degradation was carried out using bismuth-doped TiO2 (Bi-TiO2) as a photocatalyst. The effect of Bi-TiO2 synthesized at various Bi concentrations and calcination temperatures on HA degradation was investigated and compared to pristine TiO2. Bi-TiO2 was synthesized via the sol-gel method and characterized using X-Ray Diffraction (XRD), Diffuse Reflectance Spectroscopy UV-Visible (DRS UV-Vis), and Fourrier Transform-Infra Red (FT-IR) Spectroscopy. The XRD analysis showed that the optimum calcination temperature was 500oC, with the highest crystallinity index (62.04%) and smallest crystallite size (11.95 nm). The DRS UV-Vis analysis showed that Bi-TiO2 1.5% led to the lowest band gap of 1.59 eV (λ = 782.33 nm), indicating that the photocatalyst was active under visible light irradiation. The FT-IR analysis showed an adsorption peak from the Bi-O bond at 802.39 cm-1, which caused a shift in the Ti-O-Ti adsorption peak. The photodegradation test was conducted using a 30 mL volume of HA solution 50 ppm and a 50 mg mass of catalyst. The results showed that Bi-TiO2 1.5% exhibited the highest efficiency in degrading HA, achieving 68.54% under visible light irradiation for 180 minutes. These results suggest the potential of Bi-TiO2 as an alternative method for treating HA in peat water using visible light irradiation.

 

Keywords

synthesis;, Bi-TiO2; photocatalysis; degradation;, humic acid

Full Text:

PDF

References

[1] N. Chaukura W. Moyo, B. B. Mamba, and T. I. Nkambules, “Abatement of humic acid from aqueous solution using a carbonaceous conjugated microporous polymer derived from waste polystyrene”, Environ. Sci. Pollut. Res., vol. 25, pp. 3291-3300, 2018,
doi: 10.1007/s11356-017-0691-x

[2] F. Tahmasebi, M. Alimohammadi, R. Nabizadeh, M. Khoobi, K. Karimian, and A. Zarei, “Performance evaluation of graphene oxide coated on cotton fibers in removal of humic acid from aquatic solutions”, Korean J. Chem. Eng., vol. 36, pp. 894-902, 2019,
doi: 10.1007/s11814-019-0277-z

[3] S. Li, M. He, Z. Li, D. Li, and Z. Pan, “Removal of humic acid from aqueous solution by magnetic multi-walled carbon nanotubes decorated with calcium”, J. Mol. Liq., vol. 230, pp. 520-528, 2017,

doi: 10.1016/j.molliq.2017.01.027

[4] A. A. Mohammadi, M. H. Dehghani, A. Mesdaghinia, K. Yaghmaian, and Z. Es’haghi, “Adsorptive removal of endocrine disrupting compounds from aqueous solutions using magnetic multi-wall carbon nanotubes modified with chitosan biopolymer based on response surface methodology: Functionalization, kinetics, and isotherms studies”, Int. J. Biol. Macromol., vol. 155, pp. 1019-1029, 2020,
doi: 10.1016/j.ijbiomac.2019.11.065

[5] T. X. Tung, D. Xu, Y. Zhang, Q. Zhou, and Z. Wu, “Removing Humic Acid from Aqueous Solution Using Titanium Dioxide: A Review”, Pol. J. Environ. Stud, vol. 28, no. 2, pp. 529-542, 2019,

doi: 10.15244/pjoes/85196

[6] F. Scarpelli, T. F. Mastropietro, T. Poerio, and N. Godbert, “Mesoporous TiO2 Thin Films: State of the Art”, Titanium Dioxide – Material for a Sustainable Environment, 2018,

doi: 10.5772/intechopen.74244

[7] J. L. Song, H. J. Ma, H. Jia, r. F. Wang, and Z. P. Dong, “Facile Synthesis of Amorphous Bi-Doped TiO2 and Its Visible Light Photocatalytical Properties”, J. Nanosci. Nanotechnol., vol. 17, no. 8, pp. 5318-5326, 2017,

doi: 10.1166/jnn.2017.13806

[8] A. Alzamly, F. Hamed, T. Ramachandran, M. Bakiro, A. H. Ahmed, S. Mansour, A. Salem, K. A. al, N. S. A. Kaabi, M. Meetani, and A. Khaleel, “Tunable band gap of Bi3+-doped anatase TiO2 for enhanced photocatalytic removal of acetaminophen under UV-visible light irradiation”, Journal of Water Reuse and Desalination, vol. 9, no. 1, pp. 31-46, 2018,

doi: 10.2166/wrd.2018.021

[9] D. Fatmawati, A. B. Aritonang, and Nurlina, “Sintesis dan Karakterisasi TiO2-Kaolin Menggunakan Metode Sol Gel”, JKK, vol. 8, no. 2, pp. 15-21, 2019.

Google Scholar

[10] P.A.K. Reddy, B. Srinivas, P. Kala, V. D. Kumari, M. Subrahmanyam, “Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide”, Mater. Res. Bul.l, vol. 46, no. 11, pp. 1766-1771, 2011,

doi: 10.1016/j.materresbull.2011.08.006

[11] S. S. Mohtar, F. Aziz, A. R. M. Nor, A. M. Mohammed, A. A. Mhamad, J. Jaafar, N. Yusof, W. N. W. Salleh, and A. F. Ismail, “Photocatalytic degradation of humic acid using a novel visible-light active α-Fe2O3/NiS2 composite photocatalyst”, J. Environ. Chem. Eng., vol. 9, no. 4, 105682, pp. 1-12, 2021,

doi: 10.1016/j.jece.2021.105682

[12] D. Liu, C. Li, C. Zhao, E. Nie, J. Wang, J. Zhou, and Q. Zhao, “Efficient Dye Contaminant Elimination and Simultaneously Electricity Production via a Bi-Doped TiO2 Photocatalytic Fuel Cell”, Nanomaterials, vol. 12, no. 2, 210, pp. 1-12, 2022,
doi: 10.3390/nano12020210

[13] B. Choudhury and A. Choudhury, “Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature”, Int. Nano. Lett., vol. 3, no. 55, pp. 1-9, 2013,
doi: 10.1186/2228-5326-3-55

[14] M. G. Kim, J. M. Kang, J. E. Lee, K. S. Kim, K. H. Kim, M. Cho, and S. G. Lee, “Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2 Nanoparticles”, ACS Omega, vol. 6, no. 16, pp. 10668-10678, 2021,
doi: 10.1021/acsomega.1c00043

[15] N. K. Reddy, G. K. Reddy, K. M. Basha, P. K. Mounika, and M. V. Shankar, “Highly Efficient Hydrogen Production using Bi2O3/TiO2 Nanostructured Photocatalysts Under Led Light Irradiation”, Mater. Today Proc., vol. 3, no. 6, pp. 1351-1358, 2016,
doi: 10.1016/j.matpr.2016.04.014

[16] A. Charanpahari, S. C. Ghugal, S. S. Umare, and R. Sasikala, “Mineralization of malachite green dye over visible light responsive bismuth doped TiO2-ZrO2 ferromagnetic nanocomposites”, New J. Chem., vol. 39, no. 5, pp. 3629-3638, 2015,
doi: 10.1039/C4NJ01618A

[17] H. Xiang, B. Tuo, J. Tian, K. Hu, J. Wang, J. Cheng, and Y. Tang, “Preparation and photocatalytic properties of Bi-doped TiO2/montmorillonite composite”, Opt. Mater. (Amst), vol. 117, no. 111137, pp. 1-8, 2021,
doi: 10.1016/j.optmat.2021.111137

[18] Y. Ma, X. Yang, G. Gao, Z. Yan, H. Su, B. Zhang, Y. Lei, and Y. Zhang, “Photocatalytic partial oxidation of methanol to methyl formate under visible light irradiation on Bi-doped TiO2via tuning band structure and surface hydroxyls”, RSC Adv., vol. 10, no. 52, pp. 31442-31452, 2020,
doi: 10.1039/D0RA06309F

[19] M. Ferro, A. Mannu, W. Panzeri, C. H. J. Theeuwen, and A. Mele, “An Integrated Approach to Optimizing Cellulose Mercerization”, Polymers, vol. 12, no. 7, 1559, pp. 1-16, 2020,

doi: 10.3390/polym12071559

[20] S. Estrada-Flores, C. M. Pérez-Berumen, T. E. Flores-Guia, L. A. García-Cerda, J. Rodríguez-Hernández, T. A. Esquivel-Castro, and A. Martínez-Luévanos, “Mechanosynthesis of Mesoporous Bi-Doped TiO2: The Effect of Bismuth Doping and Ball Milling on the Crystal Structure, Optical Properties, and Photocatalytic Activity”, Crystals, vol. 12, no. 1750, pp. 1-18, 2022,
doi: 10.3390/cryst12121750

[21] M. Lal, P. Sharma, and C. Ram, “Calcination Temperature Effect on Titanium Oxide (TiO2) Nanoparticles Synthesis”, Optik, vol. 241. no. 166934, pp. 1-26, 2021,
doi: 10.1016/j.ijleo.2021.166934

[22] G. Nagaraj, A. D. Raj, A. A. Irudayaraj, R. L. Josephine, “Tuning the optical band Gap of pure TiO2 via photon induced method”, Optik, vol. 179, no. 1, pp. 889-894, 2018,
doi: 10.1016/j.ijleo.2018.11.009

[23] Ü. Ünlü, S. Kemeç, and G. S. P. Soylu, “The impact of alkaline earth oxides on Bi2O3 and their catalytic activities in photodegradation of Bisphenol A”, Turk. J. Chem., vol. 45, no. 3, pp. 683-693, 2021,
doi: 10.3906%2Fkim-2101-30

[24] K. M. Prabu and P. M. Anbarasan, “Preparation and Characterization of Silver, Magnesium & Bismuth Doped Titanium Dioxide Nanoparticles for Solar Cell Applications”, IJSR, vol. 3, no. 9, pp. 132-137, 2014.

Google Scholar

[25] T. Sirimahasal, S. Pranee, S. Chuayprakong, S. Durmus, and S. Seeyangnok, “Synthesis and Characterization of Bismuth Oxo Compounds Supported on TiO2 Photocatalysts for Waste Water Treatment”, Key Eng. Mater., vol. 757, pp. 108-112, 2017,

doi: 10.4028/www.scientific.net/KEM.757.108

[26] W. Wang, D. Zhu, Z. Shen, J. Peng, J. Luo, and X. Liu, “One-Pot Hydrothermal Route to Synthesize the Bi-doped Anatase TiO2 Hollow Thin Sheets with Prior Facet Exposed for Enhanced Visible-Light-Driven Photocatalytic Activity”, Ind. Eng. Chem. Res, vol. 55, 22, pp. 6373-6383, 2016,
doi: 10.1021/acs.iecr.6b00618

[27] S. Bagwasi, Y. Niu, M. Nasir, B. Tian, and J. Zhang, “The study of visible light active bismuth modified nitrogen doped titanium dioxide photocatalysts: Role of bismuth”, Appl. Surf. Sci., vol. 264, pp. 139-147, 2013,

doi: 10.1016/j.apsusc.2012.09.145

[28] A. B. Aritonang, E. Pratiwi, W. Warsidah, S. I. Nurdiansyah, and R. Risko, “Fe-doped TiO2/Kaolinite as an Antibacterial Photocatalyst under Visible Light Irradiation”, BCRC, vol. 16, no. 2, pp. 293-301, 2021,
doi: 10.9767/bcrec.16.2.10325.293-301

[29] S. M. Pormazar, M. H. Ehrampoush, and A. Dalvand, “Removal of Humic Acid from Aqueous Solution by Fe3O4@L-Arginine Magnetic Nanoparticle: Kinetic and Equilibrium Studies”, Int. J. Environ. Anal. Chem., vol. 102, no. 14, pp. 1-6, 2020,
doi: 10.1080/03067319.2020.1767092

[30] I. Ali, S. R. Kim, S. P. Kim, and J. O. Kim, “Anodization of bismuth doped TiO2 nanotubes composite for photocatalytic degradation of phenol in visible light”, Catal. Today, vol. 282, no. 1, pp. 31-37, 2017,
doi: 10.1016/j.cattod.2016.03.029

[31] J. S. Barroso-Martínez, S. I. B. Romo, S. Pudar, S. T. Putnam, E. Bustos, and J. Rodríguez-López,, “Real-Time Detection of Hydroxyl Radicals Generated at Operating Electrodes via Redox-Active Adduct Formation Using Scanning Electrochemical Microscopy”, J. Am. Chem. Soc, vol. 144, no. 41, pp. 18896-18907, 2022,

doi: 10.1021/jacs.2c06278

[32] S. G. Shelar, V. K. Mahajan, S. P. Patil, and G. H. Sonowane, “Effect of doping parameters on photocatalytic degradation of methylene blue using Ag doped ZnO nanocatalyst”, SN Appl. Sci., vol. 2, no. 802, pp. 1-10, 2020,

doi: 10.1007/s42452-020-2634-2

[33] A. Abdelhaleem and W. Chu, “Prediction of Carbofuran Degradation Based on the Hydroxyl Radical’s Generation using the FeIII impregnated N doped-TiO2/H2O2/Visible LED Photo-Fenton-like Process”, Chemical Engineering Journal, vol. 382, no. 122930, pp. 1-40,
doi: 10.1016/j.cej.2019.122930


Refbacks

  • There are currently no refbacks.