The Effect of Testing Chamber on the Response Patterns of an array of Gas Sensor in Sensing Robusta Coffee Aroma from Bangsalsari and Sidomulyo, Jember

Asnawati Asnawati, Siswoyo Siswoyo, Febiola Silvia Ningsih, Qurotul Ainiyah, Zulfikar Zulfikar, Tri Mulyono, Yeni Maulidah Muflihah, Yeni Maulidah Muflihah

Abstract

The gas sensor performance can be improved by optimizing the testing chamber design, including volume, shape, gas inlet/outlet positions, and sensor array. We studied the effect of chamber design on the gas sensor's response patterns characteristics in differentiating Robusta coffee aroma from Sidomulyo, and Bangsalsari, Jember. Hemisphere and cylindrical chambers, with three variations for each model, and a ring chamber, were used as model chambers. Eight types of gas sensors (MQ-135, MQ-136, MQ-2, MQ-3, MQ-6, MQ-7, MQ-8, and MQ-9) were used in the sensor array system to examine the gas sensor instrument performance. The resulting responses were analyzed using the reproducibility, response time, and principal component analysis (PCA) test. The result shows that the reproducibility value for all hemisphere chamber models, cylindrical chamber model-1, and ring chamber indicated an excellent sensor performance (%RSD<20%). Meanwhile, the cylindrical chambers model-2 and 3 resulted in %RSD>20%, indicating the low performance of the gas sensor. Among all variations, hemisphere chamber model-1, a hemisphere chamber with the inlet position lower than the outlet gas position, has the best performance due to the shortest response time, high-intensity signal, and performing ability to distinguish the response patterns characteristics of Robusta coffee aroma from Sidomulyo and Bangsalsari, Jember, Indonesia. In this study, we found that changing the testing chamber design, volume, and inlet/outlet position resulting different gas sensor responses to the coffee aroma. The proposed instrument can distinguish the coffee aroma from a different origin.

Keywords

electronic nose; chamber; gas sensor; coffee; response patterns

Full Text:

PDF

References

[1] J. Ryu et al., “Effect of Measurement System Configuration and Operating Conditions on 2D Material-Based Gas Sensor Sensitivity,” Nanomaterials, vol. 13, no. 3, pp. 17–20, 2023,

doi: 10.3390/nano13030573.

[2] L. Parellada-Monreal, G. G. Mandayo, A. Martín-Mayor, I. Souto-Canteli, and M. M. Bou-Ali, “Influence of the test-chamber shape on the performance of conductometric gas sensors,” Sensors Actuators B Chem., vol. 361, no. March, p. 131694, 2022,

doi: 10.1016/j.snb.2022.131694.

[3] T. Konduru, G. C. Rains, and C. Li, “A customised metal oxide semiconductor-based gas sensor array for onion quality evaluation: System development and characterisation,” Sensors (Switzerland), vol. 15, no. 1, pp. 1252–1273, 2015,

doi: 10.3390/s150101252.

[4] N. S. Samiyan and M. Mohd Addi, “Characterisation of sensing chamber design for E-nose applications,” J. Telecommun. Electron. Comput. Eng., vol. 9, no. 3–9, pp. 123–127, 2017.

Google Scholar

[5] F. E. Annanouch, M. Bendahan, G. Bouchet et al., “Optimized Testing Chamber for Qualified Sensor Responses Measurement,” Sensors & Transducers Journal, vol. 222, no. 6, pp. 12-17, 2018.

Google Scholar

[6] F.-E. Annanouch et al., “How the Chamber Design Can Affect Gas Sensor Responses,”Proceedings, vol. 2, no. 13, p. 820, 2018,

doi: 10.3390/proceedings2130820.

[7] D. D. Novita, A. B. Sesunan, M. Telaumbanua, S. Triyono, and T. W. Saputra, “Identifikasi jenis kopi menggunakan sensor e-nose dengan metode pembelajaran jaringan syaraf tiruan backpropagation,” Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, vol. 9, no. 2, pp. 205-217, 2021,

doi: 10.29303/jrpb.v9i2.241.

[8] M. Telaumbanua, D. D. Novita, S. Triyono, and C. Saragih, “Tipe chamber dan posisi sensor e-nose untuk mendeteksi aroma biji kopi robusta menggunakan mikrokontroler,” Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, vol. 9, no. 1, pp. 84-95, 2021,

doi: 10.29303/jrpb.v9i1.237.

[9] M. Mamat, S. A. Samad, and M. A. Hannan, “An electronic nose for reliable measurement and correct classification of beverages,” Sensors, vol. 11, no. 6, pp. 6435–6453, 2011,

doi: 10.3390/s110606435.

[10] L. Lopez et al., “Influence of chamber design on the gas sensing performance of graphene field-effect-transistor,” SN Appl. Sci., vol. 2, no. 7, pp. 1–11, 2020,

doi: 10.1007/s42452-020-2676-5.

[11] K. Fujioka, Y. Tomizawa, N. Shimizu, K. Ikeda, and Y. Manome, “Improving the performance of an electronic nose by wine aroma training to distinguish between drip coffee and canned coffee,” Sensors, vol. 15, no. 1, pp. 1354–1364, 2015,

doi: 10.3390/s150101354.

[12] K. Fujioka, Y. Tomizawa, N. Shimizu, and Y. Manome, “Description of Coffee Aroma with the Electronic Nose which Learned Wine Aromas, ‘Le Nez du Vin,’” International Electronic Conference on Sensors and Applications, 2014,

doi: 10.3390/ecsa-1-g005.

[13] Y. Arimurti, K. Triyana, and S. Anggrahini, “Portable Electronic Nose for Discrimination of Indonesian Robusta Coffee Aroma with Varied Roasting Temperature Correlated with Gas Chromatography Mass Spectrometry,” Indones. J. Appl. Phys., vol. 9, no. 2, p. 93, 2019,

doi: 10.13057/ijap.v9i02.18622.

[14] M. U. Zafira, K. Ghozali, and I. A. Sabilla, “Rancang Bangun Prototype Monitoring Kualitas Udara dalam Ruangan,” Jurnal Teknik ITS, vol. 11, no. 2, pp. 91–96, 2022,

doi: 10.12962/j23373539.v11i2.86341.

[15] Joko Christian and Nurul Komar, “Prototipe Sistem Pendeteksi Kebocoran Gas LPG Menggunakan Sensor Gas MQ2, Board Arduino Duemilanove, Buzzer, dan Arduino GSM Shield pada PT. Alfa Retailindo (Carrefour Pasar Minggu),” Jurnal TICOM, vol. 2, no. 1, pp. 58–64, 2013.

Google Scholar

[16] H. Rizki, Azhar, and M. Kamal, “Rancang bangun alat pengukuran kadar gas berbahaya untuk galian tambang berbasis wireless,” Jurnal TEKTRO, vol. 1, no. 1, 2017,

doi: 10.30811/tektro.v1i1.1416.

[17] G. Procida, C. Lagazio, F. Cateni, M. Zacchigna, and A. Cichelli, “Characterisation of Arabica and Robusta volatile coffees composition by reverse carrier gas headspace gas chromatography–mass spectrometry based on a statistical approach,” Food Sci. Biotechnol., vol. 29, no. 10, pp. 1319–1330, 2020,

doi: 10.1007/s10068-020-00779-7.

[18] R. Guchardi and P. C. Hauser, “Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector,” Analyst, no. 4, 2004,

doi: 10.1039/B315773C.

[19] C. Min, M. Biyi, L. Jianneng, L. Yimin, L. Yijun, and C. Long, “Characterisation of the volatile organic compounds produced from green coffee in different years by gas chromatography ion mobility spectrometry,” RSC Adv., vol. 12, no. 24, pp. 15534–15542, 2022,

doi: 10.1039/d2ra01843h.

[20] P. Zakidou, F. Plati, A. Matsakidou, E. M. Varka, G. Blekas, and A. Paraskevopoulou, “Single origin coffee aroma: From optimised flavor protocols and coffee customisation to instrumental volatile characterisation and chemometrics,” Molecules, vol. 26, no. 15, 2021,

doi: 10.3390/molecules26154609.

[21] M. Korhoňová, K. Hron, D. Klimčíková, L. Müller, P. Bednář, and P. Barták, “Coffee aroma-Statistical analysis of compositional data,” Talanta, vol. 80, no. 2, pp. 710–715, 2009,

doi: 10.1016/j.talanta.2009.07.054.

[22] G. Hendro, T. B. Adji, and N. A. Setiawan, “Penggunaan Metodologi Analisa Komponen Utama ( PCA ) untuk Mereduksi Faktor-Faktor yang Mempengaruhi Penyakit Jantung Koroner,” Semininar Nasional ScrETec, pp. 1–5, 2012.

Google Scholar

[23] M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 1, pp. 20–24, 2019,

doi: 10.30591/jpit.v4i1.1253.

[24] H. Artigue and G. Smith, “The principal problem with principal components regression,” Cogent Math. Stat., vol. 6, no. 1, p. 1622190, 2019,

doi: 10.1080/25742558.2019.1622190

[25] Ł. Guz, G. Łagód, K. Jaromin-Gleń, Z. Suchorab, H. Sobczuk, and A. Bieganowski, “Application of gas sensor arrays in assessment of wastewater purification effects,” Sensors, vol. 15, no. 1, pp. 1–21, 2015,

doi: 10.3390/s150100001.

Refbacks

  • There are currently no refbacks.