Photocatalytic Degradation of Methylene Blue using Fe2O3-TiO2/Kaolinite under Visible Light Illumination

Anthoni Batahan Aritonang, Hanopa Selpiana, Muhammad Agus Wibowo, Warsidah warsidah, Adhitiawarman Adhitiawarman

Abstract

Combining TiO2 and a semiconductor with a smaller band gap, such as Fe2O3, to form a heterojunction composite can increase its photocatalytic activity. In this work, the Fe2O3-TiO2/kaolinite composites were successfully synthesized by ultrasonic-assisted coprecipitation using titanium-tetraisopropoxide (TTIP) dan Fe (NO3)3.9H2O as precursors. Using kaolinite as a matrix also increases the photocatalyst’s surface area. The obtained Fe2O3-TiO2/kaolinite composites were characterized. The crystal phase was characterized using X-Ray Diffraction and resulted in anatase with a crystallite size average of 9,7 nm. Fourier Transform Infrared Spectrophotometer (FTIR) shows the peak at a wavenumber 574-1210 cm−1 ascribed TiO2 and Fe2O3 incorporated into kaolinite. The Optical properties show the absorption edge of Fe2O3-TiO2/kaolinite is redshift toward the visible light region. The result showed that the photocatalytic activity of Fe2O3-TiO2/kaolinite composites with heterostructure was more active than the corresponding Fe2O3 or pure TiO2 in the degradation of methylene blue under visible light illumination, which can degrade 83% for 180 minutes. Fe2O3 and kaolinite cause its synergistic effect as supporting materials. Furthermore, it indicates that the recombination of photo hole and photoelectron charge pair can be minimized. The Fe2O3-TiO2/kaolinite composite is a promising photocatalyst to degrade organic pollutants for wastewater treatment.

Keywords

Fe2O3-TiO2; kaolinite; composites; sol-gel; ultrasonic assisted coprecipitation

Full Text:

PDF

References

lang=EN-GB style='font-size:10.0pt;font-family:"Arial",sans-serif;color:black;

mso-themecolor:text1;mso-ansi-language:EN-GB;mso-bidi-font-weight:bold;

mso-bidi-font-style:italic'>

yes'>ADDIN Mendeley Bibliography CSL_BIBLIOGRAPHY

style='mso-element:field-separator'>[1] H. H. Mohamed, N. A. Alomair, S. Akhtar, and T. E. Youssef, “Eco-friendly synthesized α-Fe2O3/TiO2 heterojunction with enhanced visible light photocatalytic activity,” J. Photochem. Photobiol. A Chem., vol. 382, no. June, p. 111951, 2019,

doi: 10.1016/j.jphotochem.2019.111951.

[2] M. Nasirian, C. F. Bustillo-Lecompte, and M. Mehrvar, “Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: Effects of calcination temperature and UV-assisted thermal synthesis,” J. Environ. Manage., vol. 196, pp. 487–498, 2017,

doi: 10.1016/j.jenvman.2017.03.030.

[3] S. Mohammadhosseini et al., “UV and Visible Light Induced Photodegradation of Reactive Red 198 Dye and Textile Factory Wastewater on Fe2O3/Bentonite/TiO2 Nanocomposite,” Minerals, vol. 12, no. 11, pp. 1417, 2022,

doi: 10.3390/min12111417.

[4] S. C. Lee, H. O. Lintang, and L. Yuliati, “High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid,” Beilstein J. Nanotechnol., vol. 8, no. 1, pp. 915–926, 2017,

doi: 10.3762/bjnano.8.93.

[5] Y. Q. Cao et al., “Enhanced visible light photocatalytic activity of Fe2O3 modified TiO2 prepared by atomic layer deposition,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020,

doi: 10.1038/s41598-020-70352-z.

[6] A. B. Aritonang, Y. K. Krisnandi, and J. Gunlazuardi, “Modification of TiO2 nanotube arrays with N doping and Ag decorating for enhanced visible light photoelectrocatalytic degradation of methylene blue,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 1, pp. 234–241, 2018,

doi: 10.18517/ijaseit.8.1.2342.

[7] T. K. Jana, A. Pal, A. K. Mandal, S. Sarwar, P. Chakrabarti, and K. Chatterjee, “Photocatalytic and Antibacterial Performance of α-Fe2O3 Nanostructures,” ChemistrySelect, vol. 2, no. 10, pp. 3068–3077, 2017,

doi: 10.1002/slct.201700294.

[8] M. Long, Y. Zhang, Z. Shu, A. Tang, J. Ouyang, and H. Yang, “Fe2O3 nanoparticles anchored on 2D kaolinite with enhanced antibacterial activity,” Chem. Commun., vol. 53, no. 46, pp. 6255–6258, 2017,

doi: 10.1039/c7cc02905e.

[9] B. Sharma, P. K. Boruah, A. Yadav, and M. R. Das, “TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 134–145, 2018,

doi: 10.1016/j.jece.2017.11.025.

[10] A. Banisharif et al., “Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: Experimental and computational studies,” Appl. Catal. B Environ., vol. 165, pp. 209–221, 2015,

doi: 10.1016/j.apcatb.2014.10.023.

[11] Z. Ahmad Zubir et al., “Synthesis and Characterization of Fe2O3/TiO2/ SiO2 and Fe2O3/TiO2/Activated Carbon Nanocomposite Photocatalysts for Dye Removal,” Adv. Mater. Res., vol. 1133, pp. 523–526, 2016,

doi: 10.4028/www.scientific.net/AMR.1133.52

[12] D. Liu, Z. Li, W. Wang, and G. Wang, “Hematite doped magnetic TiO2 nanocomposites with improved photocatalytic activity,” J. Alloys Compd., vol. 654, pp. 491–497, 2016,

doi: 10.1016/j.jallcom.2015.09.140.

[13] S. M. R. Shariatzadeh, M. Salimi, H. Fathinejad, and A. Hassani Joshaghani, “Nanostructured α-Fe2O3: Solvothermal Synthesis, Characterization, and Effect of Synthesis Parameters on Structural Properties,” Int. J. Eng. Trans. C Asp., vol. 35, no. 6, pp. 1186–1192, 2022,

doi: 10.5829/ije.2022.35.06c.10.

[14] S. Lubis, I. Maulana, and . M., “Synthesis and Characterization of TiO2/α-Fe2O3 Composite Using Hematite from Iron Sand for Photodegradation Removal of Dye,” J. Nat., vol. 18, no. 1, pp. 38–43, 2018,

doi: 10.24815/jn.v18i1.8649.

[15] K. Dědková et al., “Antibacterial activity of kaolinite/nanoTiO2 composites in relation to irradiation time,” J. Photochem. Photobiol. B Biol., vol. 135, pp. 17–22, 2014,

doi: 10.1016/j.jphotobiol.2014.04.004.

[16] Q. He, C. Xie, D. Gan, and C. Xiao, “The efficient degradation of organic pollutants in an aqueous environment under visible light irradiation by persulfate catalytically activated with kaolin-Fe2O3,” RSC Adv., vol. 10, no. 1, pp. 43–52, 2019,

doi: 10.1039/c9ra09253f.

[17] L. Peng, T. Xie, Y. Lu, H. Fan, and D. Wang, “Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts,” Phys. Chem. Chem. Phys., vol. 12, no. 28, pp. 8033–8041, 2010,

doi: 10.1039/c002460k.

[18] A. B. Aritonang, E. Pratiwi, W. Warsidah, S. I. Nurdiansyah, and R. Risko, “Fe-doped TiO2/Kaolinite as an antibacterial photocatalyst under visible light irradiation,” Bull. Chem. React. Eng. Catal., vol. 16, no. 2, pp. 293–301, 2021,

doi: 10.9767/bcrec.16.2.10325.293-301.

[19] D. N. F. Muche, F. L. Souza, and R. H. R. Castro, “New ultrasonic assisted co-precipitation for high surface area oxide based nanostructured materials,” React. Chem. Eng., vol. 3, no. 3, pp. 244–250, 2018,

doi: 10.1039/c7re00183e.

[20] M. R. A. Kumar, B. Abebe, H. P. Nagaswarupa, H. C. A. Murthy, C. R. Ravikumar, and F. K. Sabir, “Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: Its applications in dye decolorization and as supercapacitors,” Sci. Rep., vol. 10, no. 1, pp. 1–15, 2020,

doi: 10.1038/s41598-020-58110-7.

[21] K. Dedkova, K. Matejova, J. Lang, P. Peikertova, "Antibacterial activity of kaolinite/nanoTiO2 composites in relation to irradiation time," J. Photochem. Photobio. B: Biology, vol. 135, pp. 17-22, 2014,

doi: 10.1016/j.jphotobiol.2014.04.004.

[22] W. Chang, M. Zhang, X. Ren, and A. Miller, “Synthesis and photocatalytic activity of monolithic Fe2O3/TiO2,” South African J. Chem., vol. 70, pp. 127–131, 2017,

doi: 10.17159/0379-4350/2017/v70a18.

[23] S. J. A. Moniz and J. Tang, “Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route,” ChemCatChem, vol. 7, no. 11, pp. 1659–1667, 2015,

doi: 10.1002/cctc.201500315.

[24] M. Humayun, F. Raziq, A. Khan, and W. Luo, “Modification strategies of TiO2 for potential applications in photocatalysis: A critical review,” Green Chem. Lett. Rev., vol. 11, no. 2, pp. 86–102, 2018,

doi: 10.1080/17518253.2018.1440324.

%;font-family:"Arial",sans-serif;mso-fareast-font-family:"Times New Roman";

color:black;mso-themecolor:text1;mso-ansi-language:EN-GB;mso-fareast-language:

AR-SA;mso-bidi-language:AR-SA;mso-bidi-font-weight:bold;mso-bidi-font-style:

italic'>

lang=EN-GB style='font-size:10.0pt;font-family:"Arial",sans-serif;color:black;

mso-themecolor:text1;mso-ansi-language:EN-GB;mso-bidi-font-weight:bold;

mso-bidi-font-style:italic'>

yes'>ADDIN Mendeley Bibliography CSL_BIBLIOGRAPHY

style='mso-element:field-separator'>[1] H. H. Mohamed, N. A. Alomair, S. Akhtar, and T. E. Youssef, “Eco-friendly synthesized α-Fe2O3/TiO2 heterojunction with enhanced visible light photocatalytic activity,” J. Photochem. Photobiol. A Chem., vol. 382, no. June, p. 111951, 2019,

doi: 10.1016/j.jphotochem.2019.111951.

[2] M. Nasirian, C. F. Bustillo-Lecompte, and M. Mehrvar, “Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: Effects of calcination temperature and UV-assisted thermal synthesis,” J. Environ. Manage., vol. 196, pp. 487–498, 2017,

doi: 10.1016/j.jenvman.2017.03.030.

[3] S. Mohammadhosseini et al., “UV and Visible Light Induced Photodegradation of Reactive Red 198 Dye and Textile Factory Wastewater on Fe2O3/Bentonite/TiO2 Nanocomposite,” Minerals, vol. 12, no. 11, pp. 1417, 2022,

doi: 10.3390/min12111417.

[4] S. C. Lee, H. O. Lintang, and L. Yuliati, “High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid,” Beilstein J. Nanotechnol., vol. 8, no. 1, pp. 915–926, 2017,

doi: 10.3762/bjnano.8.93.

[5] Y. Q. Cao et al., “Enhanced visible light photocatalytic activity of Fe2O3 modified TiO2 prepared by atomic layer deposition,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020,

doi: 10.1038/s41598-020-70352-z.

[6] A. B. Aritonang, Y. K. Krisnandi, and J. Gunlazuardi, “Modification of TiO2 nanotube arrays with N doping and Ag decorating for enhanced visible light photoelectrocatalytic degradation of methylene blue,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 1, pp. 234–241, 2018,

doi: 10.18517/ijaseit.8.1.2342.

[7] T. K. Jana, A. Pal, A. K. Mandal, S. Sarwar, P. Chakrabarti, and K. Chatterjee, “Photocatalytic and Antibacterial Performance of α-Fe2O3 Nanostructures,” ChemistrySelect, vol. 2, no. 10, pp. 3068–3077, 2017,

doi: 10.1002/slct.201700294.

[8] M. Long, Y. Zhang, Z. Shu, A. Tang, J. Ouyang, and H. Yang, “Fe2O3 nanoparticles anchored on 2D kaolinite with enhanced antibacterial activity,” Chem. Commun., vol. 53, no. 46, pp. 6255–6258, 2017,

doi: 10.1039/c7cc02905e.

[9] B. Sharma, P. K. Boruah, A. Yadav, and M. R. Das, “TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 134–145, 2018,

doi: 10.1016/j.jece.2017.11.025.

[10] A. Banisharif et al., “Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: Experimental and computational studies,” Appl. Catal. B Environ., vol. 165, pp. 209–221, 2015,

doi: 10.1016/j.apcatb.2014.10.023.

[11] Z. Ahmad Zubir et al., “Synthesis and Characterization of Fe2O3/TiO2/ SiO2 and Fe2O3/TiO2/Activated Carbon Nanocomposite Photocatalysts for Dye Removal,” Adv. Mater. Res., vol. 1133, pp. 523–526, 2016,

doi: 10.4028/www.scientific.net/AMR.1133.52

[12] D. Liu, Z. Li, W. Wang, and G. Wang, “Hematite doped magnetic TiO2 nanocomposites with improved photocatalytic activity,” J. Alloys Compd., vol. 654, pp. 491–497, 2016,

doi: 10.1016/j.jallcom.2015.09.140.

[13] S. M. R. Shariatzadeh, M. Salimi, H. Fathinejad, and A. Hassani Joshaghani, “Nanostructured α-Fe2O3: Solvothermal Synthesis, Characterization, and Effect of Synthesis Parameters on Structural Properties,” Int. J. Eng. Trans. C Asp., vol. 35, no. 6, pp. 1186–1192, 2022,

doi: 10.5829/ije.2022.35.06c.10.

[14] S. Lubis, I. Maulana, and . M., “Synthesis and Characterization of TiO2/α-Fe2O3 Composite Using Hematite from Iron Sand for Photodegradation Removal of Dye,” J. Nat., vol. 18, no. 1, pp. 38–43, 2018,

doi: 10.24815/jn.v18i1.8649.

[15] K. Dědková et al., “Antibacterial activity of kaolinite/nanoTiO2 composites in relation to irradiation time,” J. Photochem. Photobiol. B Biol., vol. 135, pp. 17–22, 2014,

doi: 10.1016/j.jphotobiol.2014.04.004.

[16] Q. He, C. Xie, D. Gan, and C. Xiao, “The efficient degradation of organic pollutants in an aqueous environment under visible light irradiation by persulfate catalytically activated with kaolin-Fe2O3,” RSC Adv., vol. 10, no. 1, pp. 43–52, 2019,

doi: 10.1039/c9ra09253f.

[17] L. Peng, T. Xie, Y. Lu, H. Fan, and D. Wang, “Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts,” Phys. Chem. Chem. Phys., vol. 12, no. 28, pp. 8033–8041, 2010,

doi: 10.1039/c002460k.

[18] A. B. Aritonang, E. Pratiwi, W. Warsidah, S. I. Nurdiansyah, and R. Risko, “Fe-doped TiO2/Kaolinite as an antibacterial photocatalyst under visible light irradiation,” Bull. Chem. React. Eng. Catal., vol. 16, no. 2, pp. 293–301, 2021,

doi: 10.9767/bcrec.16.2.10325.293-301.

[19] D. N. F. Muche, F. L. Souza, and R. H. R. Castro, “New ultrasonic assisted co-precipitation for high surface area oxide based nanostructured materials,” React. Chem. Eng., vol. 3, no. 3, pp. 244–250, 2018,

doi: 10.1039/c7re00183e.

[20] M. R. A. Kumar, B. Abebe, H. P. Nagaswarupa, H. C. A. Murthy, C. R. Ravikumar, and F. K. Sabir, “Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: Its applications in dye decolorization and as supercapacitors,” Sci. Rep., vol. 10, no. 1, pp. 1–15, 2020,

doi: 10.1038/s41598-020-58110-7.

[21] K. Dedkova, K. Matejova, J. Lang, P. Peikertova, "Antibacterial activity of kaolinite/nanoTiO2 composites in relation to irradiation time," J. Photochem. Photobio. B: Biology, vol. 135, pp. 17-22, 2014,

doi: 10.1016/j.jphotobiol.2014.04.004.

[22] W. Chang, M. Zhang, X. Ren, and A. Miller, “Synthesis and photocatalytic activity of monolithic Fe2O3/TiO2,” South African J. Chem., vol. 70, pp. 127–131, 2017,

doi: 10.17159/0379-4350/2017/v70a18.

[23] S. J. A. Moniz and J. Tang, “Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesised synthesized through a rapid, one-pot, microwave solvothermal route,” ChemCatChem, vol. 7, no. 11, pp. 1659–1667, 2015,

doi: 10.1002/cctc.201500315.

[24] M. Humayun, F. Raziq, A. Khan, and W. Luo, “Modification strategies of TiO2 for potential applications in photocatalysis: A critical review,” Green Chem. Lett. Rev., vol. 11, no. 2, pp. 86–102, 2018,

doi: 10.1080/17518253.2018.1440324.

%;font-family:"Arial",sans-serif;mso-fareast-font-family:"Times New Roman";

color:black;mso-themecolor:text1;mso-ansi-language:EN-GB;mso-fareast-language:

AR-SA;mso-bidi-language:AR-SA;mso-bidi-font-weight:bold;mso-bidi-font-style:

italic'>

Refbacks

  • There are currently no refbacks.