Green Synthesis of Silver Nanoparticles via Cratoxylum glaucum Leaf Extract Loaded Polyvinyl Alcohol and Its Antibacterial Acitvity

Verry Andre Fabiani, Rahmad Lingga

Abstract

In this study, green synthesis of silver nanoparticles via Cratoxylum glaucum leaf extracts loaded with polyvinyl alcohol and its bacterial activity were tested. Nanosilver from ‘Pucuk Idat’ leaves has a non-uniform size and tends to agglomerate, making the nanoparticle size unstable and challenging to apply further. Therefore, so that nanoparticles do not aggregate, efforts are made to add stabilizers. Polyvinyl alcohol (PVA) is a polymer that can be used as a stabilizer because it can prevent unwanted aggregation and oxidation processes. UV-Vis analysis results show that PVA as a stabilizer can avoid an increase in wavelength shift. Based on the results of this XRD analysis, it can be concluded that in this research sample, the silver nanoparticle is formed with a cubic crystal system, and it can be observed that the smallest average particle size is in the 0.75% Ag/PVA sample of 10.32 nm. Furthermore, based on the antibacterial test against E. coli and S. aureus, it can be explained that the 0.75% PVA-modified nanosilver sample showed weak to medium antibacterial activity.

.

Keywords

antibacterial; particle size; polyvinyl alcohol; silver nanoparticles; stabilyzer

Full Text:

PDF

References

[1] H. A. Ariyanta, “Preparasi Nanopartikel Perak dengan Metode Reduksi dan Aplikasinya sebagai Antibakteri Penyebab Luka Infeksi,” J. MKMI, no. Maret, pp. 36–42, 2014,

doi: 10.30597/mkmi.v10i1.477.

[2] A. Haryono and S. . Harmami, “Aplikasi Nanopartikel Perak pada Serat Katun sebagai Produk Jadi Tekstil Antimikroba,” J. Kim. Indones., vol. 5, no. 1, pp. 1–6, 2010.

Google Scholar

[3] Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett., vol. 12, no. 8, pp. 4271–4275, Aug. 2012,

doi: 10.1021/nl301934w.

[4] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),” Chem. Mater., vol. 14, no. 11, pp. 4736–4745, Nov. 2002,

doi: 10.1021/cm020587b.

[5] B. Yin, H. Ma, S. Wang, and S. Chen, “Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone),” J. Phys. Chem. B, vol. 107, no. 34, pp. 8898–8904, Aug. 2003,

doi: 10.1021/jp0349031.

[6] N. M. Dimitrijevic, D. M. Bartels, C. D. Jonah, K. Takahashi, and T. Rajh, “Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane,” J. Phys. Chem. B, vol. 105, no. 5, pp. 954–959, Feb. 2001,
doi: 10.1021/jp0028296.

[7] A. Callegari, D. Tonti, and M. Chergui, “Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape,” Nano Lett., vol. 3, no. 11, pp. 1565–1568, Nov. 2003,

doi: 10.1021/nl034757a.

[8] A. Swami, P. R. Selvakannan, R. Pasricha, and M. Sastry, “One-step synthesis of ordered two-dimensional assemblies of silver nanoparticles by the spontaneous reduction of silver ions by pentadecylphenol langmuir monolayers,” J. Phys. Chem. B, vol. 108, no. 50, pp. 19269–19275, Dec. 2004,

doi: 10.1021/jp0465581.

[9] K. B. Narayanan and N. Sakthivel, “Biological synthesis of metal nanoparticles by microbes,” Advances in Colloid and Interface Science, vol. 156, no. 1–2. pp. 1–13, Apr. 22, 2010.

doi: 10.1016/j.cis.2010.02.001.

[10] H. F. Aritonang, D. Onggo, Ciptati, and C. L. Radiman, “Insertion of Platinum Particles in Bacterial Cellulose Membranes from PtCl4 and H2PtCl6 Precursors,” in Macromolecular Symposia, Jul. 2015, vol. 353, no. 1, pp. 55–61, 2015,

doi: 10.1002/masy.201550307.

[11] G. M. Sulaiman, W. H. Mohammed, T. R. Marzoog, A. A. A. Al-Amiery, A. A. H. Kadhum, and A. B. Mohamad, “Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract,” Asian Pac. J. Trop. Biomed., vol. 3, no. 1, pp. 58–63, 2013,

doi: 10.1016/S2221-1691(13)60024-6.

[12] O. Roanisca, R. G. Mahardika, and F. I. P. Sari, “Total Phenolic and Antioxidant Capacity of Acetone Extract of Tristaniopsis meguensis Leaves,” J. Sains dan Terap. Kim., vol. 1, no. 1, pp. 10–13, 2019,

doi: 10.33019/jstk.v1i1.1274.

[13] R. G. Mahardika and O. Roanisca, “Aktivitas Antioksidan dan Fitokimia dari Ekstrak Etil Asetat Pucuk Idat (Cratoxylum glaucum),” J. Chem. Res, vol. 5, no. 2, pp. 481–486, 2018,

doi: 10.30598//ijcr.2018.5-rob.

[14] V. . Fabiani, F. Sutanti, D. Silvia, and M. . Putri, “Green Synthesis Nanopartikel Perak Menggunakan Ekstrak Daun Pucuk Idat (Cratoxylum glaucum) sebagai Bioreduktor,” Indones. J. Pure Appl. Chem., vol. 1, no. 2, pp. 68–76, 2018,

doi: 10.26418/indonesian.v1i2.30533.

[15] V. A. Fabiani, M. A. Putri, M. E. Saputra, and D. P. Indriyani, “Synthesis of Nano Silver using Bioreductor of Tristaniopsis merguensis Leaf Extracts and Its Antibacterial Activity Test,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 4, no. 3, p. 172, Dec. 2019,

doi: 10.20961/jkpk.v4i3.34617.

[16] Rado, V. A. Fabiani, and R. G. Mahardika, “Synthesis of nanosilver with simpur leaf (Dillenia indica) modified PVA as antibacterial,” IOP Conf. Ser. Earth Environ. Sci., vol. 1108, no. 1, p. 012014, Nov. 2022,

doi: 10.1088/1755-1315/1108/1/012014.

[17] H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra, “Green synthesis of silver nanoparticles using latex of Jatropha curcas,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 339, no. 1–3, pp. 134–139, May 2009,
doi: 10.1016/j.colsurfa.2009.02.008.

[18] B. Ajitha, Y. Ashok Kumar Reddy, and P. Sreedhara Reddy, “Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract,” Mater. Sci. Eng. C, vol. 49, pp. 373–381, Apr. 2015, doi: 10.1016/j.msec.2015.01.035.

[19] A. Haryono, D. Sondari, S. . Harmami, and M. Randy, “Sintesa Nanopartikel Perak dan Potensi Aplikasinya,” J. Ris. Ind., vol. 2, no. 3, pp. 156–163, 2008.

Google Scholar

[20] Bakir, “Pengembangan Biosintesis Nanopartikel Perak menggunakan Air Rebusan Daun Bisbul (Diospyros blancoi) untuk Deteksi Ion Tembaga (II) dengan Metode Kolorimetri,” 2011.

Google Scholar

[21] S. N. Sinha, D. Paul, N. Halder, D. Sengupta, and S. K. Patra, “Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity,” Appl. Nanosci., vol. 5, no. 6, pp. 703–709, Aug. 2015,

doi: 10.1007/s13204-014-0366-6.

[22] K. . Kudle, M. . Donda, R. Merugu, Y. Prashanthi, and M. P. . Rudra, “Microwave assisted green synthesis of silver nanoparticles using Stigmaphyllon littorale leaves their characterization and antimicrobial activity,” Int. J. Nanomater. Biostructures, vol. 3, no. 1, pp. 13–16, 2013,

doi: 10.7897/2230-8407.04644.

[23] T. Wahyudi, D. Sugiyana, and Q. Helmy, “Sintesis Nanopartikel Perak dan Uji Aktivitasnya terhadap Bakteri E.coli dan S.aureus,” Arena Tekst., vol. 26, no. 1, pp. 55–60, 2011,

doi: 10.31266/at.v26i1.1442.

[24] M. Bharani, T. Karpagam, B. Varalakshmi, G. Gayathiri, and K. . Priya, “Synthesis and Characterization of Silver Nanoparticles from Wrightia tinctoria,” Int. J. Appl. Biol. Pharm. Technol., vol. 3, no. 1, pp. 58–63, 2013,

Google Scholar

[25] F. Abd Karim, R. Tungadi, and N. A. Thomas, “Biosintesis Nanopartikel Perak Ekstrak Etanol 96% Daun Kelor (Moringa oleifera) dan Uji Aktivitasnya sebagai Antioksidan,” Indones. J. Pharm. Educ., vol. 2, no. 1, pp. 32–41, 2022,

doi: 10.37311/ijpe.v2i1.11725.

[26] M. S. Akhtar, J. Panwar, and Y. S. Yun, “Biogenic synthesis of metallic nanoparticles by plant extracts,” ACS Sustain. Chem. Eng., vol. 1, no. 6, pp. 591–602, 2013,

doi: 10.1021/sc300118u.

[27] A. Michalak, “Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress,” Polish J. Environ. Stud., vol. 15, no. 4, pp. 523–530, 2006.

Google Scholar

[28] K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh, “Biological synthesis of metallic nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 2. pp. 257–262, Apr. 2010,

doi: 10.1016/j.nano.2009.07.002.

[29] A. L. Wang, H. B. Yin, X. N. Cheng, Q. F. Zhou, and X. F. Zhang, “Effect of Different Functional Group-Containing Organics on Morphology-Controlled Synthesis of Silver Nanoparticles at Room Temperature,” Acts Met. Sin. (Engl. Lett, vol. 19, pp. 362–370, 2006,

doi: 10.1016/S1006-7191(06)62074-7.

[30] D. Setiawan, “Biosintesis Nanopartikel Perak Dengan Reduktor Kulit Pisang Kepok ( Musa paradisiaca Linn. ) dan Laju Pembentukannya,” 2016.

Google Scholar

[31] G. A. D. Lestari, I. E. Suprihatin, and J. Sibarani, “Sintesis Nanopartikel Perak (NPAg) Menggunakan Ekstrak Air Buah Andaliman (Zanthoxylum acanthopodium DC.) dan Aplikasinya pada Fotodegradasi Indigosol Blue,” J. Kim. Sains dan Apl., vol. 22, no. 5, pp. 200–205, 2019.

Google Scholar

[32] S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, C. Boritz, and L. Mulfinger, “Synthesis and study of silver nanoparticles,” J. Chem. Educ., vol. 84, no. 2, pp. 322–325, 2007,

doi: 10.1021/ed084p322.

[33] F. Sutanti, D. Silvia, M. A. Putri, and V. A. Fabiani, “Pengaruh Konsentrasi AgNO3 pada Sintesis Nanopartikel Perak Menggunakan Bioreduktor Ekstrak Pucuk Idat (Cratoxylum glaucum KORTH),” in Prosiding Seminar Nasional Penelitian dan Pengabdian pada Masyarakat, pp. 175–178, 2018,

doi: 10.33019/snppm.v2i0.615.

[34] D. Apriandanu, S. Wahyuni, and S. Hadisaputro, “Sintesis Nanopartikel Perak Menggunakan Metode Poliol dengan Agen Stabilisator Polivinilalkohol (PVA),” J. MIPA, vol. 36, no. 2, pp. 157–168, 2013.

Google Scholar

[35] O. Netty Kusumawati, “Seleksi Bakteri Asam Laktat Indigenus Sebagai Galur Probiotik dengan Kemampuan Mempertahankan Keseimbangan Mikroflora Feses dan Mereduksi Kolesterol Serum Darah Tikus,” 2002.

Google Scholar

[36] M. Radji, Mikrobiologi. Jakarta: Buku Kedokteran EGC, 2011,

ISBN: 9789790441057.

[37] D. A. Mpila, Fatimawali, and W. I. Wiyono, “Uji Aktivitas Antibakteri Ekstrak Etanol Daun Mayana (Coleus atropurpureus [L] Benth) terhadap Staphylococcus aureus, Escherichia coli dan Pseudomonas aeruginosa secara In-Vitro,” Pharmacon, vol. 1, no. 1, pp. 13–21, 2012,

doi: 10.35799/pha.1.2012.440.

Refbacks

  • There are currently no refbacks.