Removal of Pb (II) Ions from Aqueous Solution using Mahogany (Swietenia macrophylla King) Sawdust as Lowcost Adsorbent

Eko Prasetyo Kuncoro, Isni Arliyani, Handoko Darmoekoesoemo

Abstract

This research aimed to investigate the removal efficiency of Pb (II) ions using mahogany sawdust as an adsorbent. Several experiments were carried out to get the results. The batch adsorption method was used. The parameters studied were pH and contact time. The pH variation used was 2, 3, 4, 5, and 6. Contact time variation used was 5, 10, 15, 30, 60, 90, 120 and 150 minutes. To evaluate the isotherm model of the adsorption, the metal concentration variation used was 10, 25, 50, 100, 150, and 200 mg/L. To evaluate kinetics adsorption, pseudo-first-order and pseudo-second-order models were used. The characterization of the adsorbent was carried out by determining pHPZC, FTIR analysis, and SEM analysis. The adsorbent had a pHPZC of 5.63. FTIR spectra showed that the adsorbent had -OH functional group that could bind to Pb (II) ions. SEM analysis showed that the surface morphology of the adsorbent supported the removal of Pb (II) ions. In this work, pH 6 provided the highest removal of Pb (II) ions, while the contact time which provided the highest removal of Pb (II) ions was 30 minutes. The removal of Pb (II) ions followed the Freundlich adsorption isotherm, while the adsorption kinetics followed pseudo-second-order model.

 

Keywords

wastewater treatment; clean water; lead; sawdust; mahogany

Full Text:

PDF

References

[1] N. A. A. Qasem, R. H. Mohammed, and D. U. Lawal, “Removal of heavy metal ions from wastewater: a comprehensive and critical review,” npj Clean Water, vol. 4, no. 1, 2021,
doi: 10.1038/s41545-021-00127-0.

[2] A. Kumar “Lead toxicity: Health hazards, influence on food Chain, and sustainable remediation approaches,” Int. J. Environ. Res. Public Health, vol. 17, no. 7, 2020,

doi: 10.3390/ijerph17072179.

[3] S. Sindern, M. Tremöhlen, L. Dsikowitzky, L. Gronen, J. Schwarzbauer, T. H. Siregar, F. Ariyani, and H. E. Irianto, “Heavy metals in river and coast sediments of the Jakarta Bay region (Indonesia) — Geogenic versus anthropogenic sources,” Mar. Pollut. Bull., vol. 110, no. 2, pp. 624–633, 2016,

doi: 10.1016/j.marpolbul.2016.06.003.

[4] E. Riani, M. R. Cordova, and Z. Arifin, “Heavy metal pollution and its relation to the malformation of green mussels cultured in Muara Kamal waters, Jakarta Bay, Indonesia,” Mar. Pollut. Bull., vol. 133, no. January 2017, pp. 664–670, 2018,

doi: 10.1016/j.marpolbul.2018.06.029.

[5] M. Zhao, Y. Xu, C. Zhang, H. Rong, and G. Zeng, “New trends in removing heavy metals from wastewater,” Appl. Microbiol. Biotechnol., vol. 100, no. 15, pp. 6509–6518, 2016,
doi: 10.1007/s00253-016-7646-x.

[6] K. H. Vardhan, P. S. Kumar, and R. C. Panda, “A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives,” J. Mol. Liq., vol. 290, p. 111197, 2019,

doi: 10.1016/j.molliq.2019.111197.

[7] R. Chakraborty, A. Asthana, A. K. Singh, B. Jain, and A. B. H. Susan, “Adsorption of heavy metal ions by various low-cost adsorbents: a review,” Int. J. Environ. Anal. Chem., vol. 00, no. 00, pp. 1–38, 2020,

doi: 10.1080/03067319.2020.1722811.

[8] E. Meez, A. Rahdar, and G. Z. Kyzas, “Sawdust for the removal of heavy metals from water: Α review,” Molecules, vol. 26, no. 14, pp. 1–21, 2021,

doi: 10.3390/molecules26144318.

[9] S. Yadav, A. Yadav, N. Bagotia, A. K. Sharma, and S. Kumar, “Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater - A review,” J. Water Process Eng., vol. 42, no. March, p. 102148, 2021,

doi: 10.1016/j.jwpe.2021.102148.

[10] I. Mannaï, S. Sayen, A. Arfaoui, A. Touil, and E. Guillon, “Copper removal from aqueous solution using raw pine sawdust, olive pomace and their derived traditional biochars,” Int. J. Environ. Sci. Technol., no. 0123456789, 2021,

doi: 10.1007/s13762-021-03629-z.

[11] S. Mallakpour, F. Sirous, and C. M. Hussain, “Sawdust, a versatile, inexpensive, readily available bio-waste: From mother earth to valuable materials for sustainable remediation technologies,” Adv. Colloid Interface Sci., vol. 295, no. July, p. 102492, 2021,

doi: 10.1016/j.cis.2021.102492.

[12] V. Rochmah, A. T. Prasetya, and T. Sulistyaningsih, “Adsospsi Ion Logam Pb2+ menggunakan Limbah Serbuk Gergaji kayu Mahoni,” Indones. J. Chem. Sci., vol. 6, no. 2, pp. 168–172, 2017.

[13] R. Chanda, A. H. Mithun, M. A. Hasan, and B. K. Biswas, “Nickel Removal from Aqueous Solution Using Chemically Treated Mahogany Sawdust as Biosorbent,” J. Chem., vol. 2021, 2021,

doi: 10.1155/2021/4558271.

[14] W. Zhan, C. Xu, G. Qian, G. Huang, X. Tang, and B. Lin, “Adsorption of Cu(ii), Zn(ii), and Pb(ii) from aqueous single and binary metal solutions by regenerated cellulose and sodium alginate chemically modified with polyethyleneimine,” RSC Adv., vol. 8, no. 33, pp. 18723–18733, 2018,

doi: 10.1039/c8ra02055h.

[15] S. Demcak, M. Balintova, M. Hurakova, M. V. Frontasyeva, I. Zinicovscaia, and N. Yushin, “Utilization of poplar wood sawdust for heavy metals removal from model solutions,” Nov. Biotechnol. Chim., vol. 16, no. 1, pp. 26–31, 2017,

doi: 10.1515/nbec-2017-0004.

[16] S. Aachhera, S. Tiwari, S. Singh, N. Nagar, H. Garg, and C. S. Gahan, “A study on the biosorption kinetics of Cu (II) and Zn (II) ions from aqueous phase (sulphate medium) using waste sawdust generated from Acacia nilotica wood carpentry,” Ecotoxicology, no. Ii, 2021, doi: 10.1007/s10646-021-02471-w.

[17] B. Kayranli, “Cadmium removal mechanisms from aqueous solution by using recycled lignocelluloses,” Alexandria Eng. J., vol. 61, no. 1, pp. 443–457, 2022,

doi: 10.1016/j.aej.2021.06.036.

[18] M. El Hajam, N. I. Kandri, G. I. Plavan, A. H. Harrath, L. Mansour, F. Boufahja, and A. Zerouale, “Pb2+ ions adsorption onto raw and chemically activated Dibetou sawdust: Application of experimental designs,” J. King Saud Univ. - Sci., vol. 32, no. 3, pp. 2176–2189, 2020,

doi: 10.1016/j.jksus.2020.02.027.

[19] C. Tejada-Tovar, A. Villabona-Ortíz, R. Ortega-Toro, H. Mancilla-Bonilla, and F. Espinoza-León, “Potential use of residual sawdust of Eucalyptus Globulus Labill in Pb (II) adsorption: Modelling of the kinetics and equilibrium,” Appl. Sci., vol. 11, no. 7, 2021,

doi: 10.3390/app11073125.

[20] N. Nurafriyanti, N. S. Prihatini, and I. Syauqiah, “Pengaruh Variasi Ph Dan Berat Adsorben Dalam Pengurangan Konsentrasi Cr Total Pada Limbah Artifisial Menggunakan Adsorben Ampas Daun Teh,” Jukung (Jurnal Tek. Lingkungan), vol. 3, no. 1, pp. 56–65, 2017,

doi: 10.20527/jukung.v3i1.3200.

[21] M. Mahmood-Ul-Hassan, M. Yasin, M. Yousra, R. Ahmad, and S. Sarwar, “Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust,” Environ. Sci. Pollut. Res., vol. 25, no. 13, pp. 12570–12578, 2018,

doi: 10.1007/s11356-018-1300-3.

[22] Y. Xu, T. Bai, Q. Li, H. Yang, Y. Yan, B. Sarkar, S. S. Lam, and N. Bolan, “Influence of pyrolysis temperature on the characteristics and lead(II) adsorption capacity of phosphorus-engineered poplar sawdust biochar,” J. Anal. Appl. Pyrolysis, vol. 154, no. August 2020, p. 105010, 2021,

doi: 10.1016/j.jaap.2020.105010.

[23] S. Li, M. Qiu, Z. Zeng, and W. Xue, “Effective Modified Walnut Shell Adsorbent: Synthesis and Adsorption Behavior for Pb2+ and Ni2+ from Aqueous Solution,” Environ. Eng. Sci., vol. 36, no. 11, pp. 1421–1432, 2019, doi: 10.1089/ees.2019.0227.

[24] S. T. Ramesh, R. Gandhimathi, J. Hamoneth Joesun, and P. V. Nidheesh, “Novel agricultural waste adsorbent, cyperus rotundus, for removal of heavy metal mixtures from aqueous solutions,” Environ. Eng. Sci., vol. 30, no. 2, pp. 74–81, 2013,

doi: 10.1089/ees.2012.0192.

[25] M. Caccin, M. Giorgi, F. Giacobbo, M. Da Ros, L. Besozzi, and M. Mariani, “Removal of lead (II) from aqueous solutions by adsorption onto activated carbons prepared from coconut shell,” Desalin. Water Treat., vol. 57, no. 10, pp. 4557–4575, 2016,

doi: 10.1080/19443994.2014.992974.

[26] M. Basu, A. K. Guha, and L. Ray, “Adsorption of Lead on Cucumber Peel,” J. Clean. Prod., vol. 151, pp. 603–615, 2017,

doi: 10.1016/j.jclepro.2017.03.028.

[27] A. Elkhaleefa, I. H. Ali, E. I. Brima, I. Shigidi, A. B. Elhag, and B. Karama, “Evaluation of the adsorption efficiency on the removal of lead(II) ions from aqueous solutions using Azadirachta indica leaves as an adsorbent,” Processes, vol. 9, no. 3, 2021,

doi: 10.3390/pr9030559.

[28] S. Biswas and U. Mishra, “Continuous Fixed-Bed Column Study and Adsorption Modeling: Removal of Lead Ion from Aqueous Solution by Charcoal Originated from Chemical Carbonization of Rubber Wood Sawdust,” J. Chem., vol. 2015, 2015, doi: 10.1155/2015/907379.

[29] X. Liu, X. Xu, X. Dong, and J. Park, “Adsorption characteristics of cadmium ions from aqueous solution onto pine sawdust biomass and biochar,” BioResources, vol. 14, no. 2, pp. 4270–4283, 2019,
doi: 10.15376/biores.14.2.4270-4283.

[30] D. Božić, M. Gorgievski, V. Stanković, M. Cakić, S. Dimitrijević, and V. Conić, “Biosorption of lead ions from aqueous solutions by beech sawdust and wheat straw,” Chem. Ind. Chem. Eng. Q., vol. 27, no. 1, pp. 21–34, 2021,

doi: 10.2298/CICEQ191113021B.

[31] C. Sinyeue, T. Garioud, M. Lemestre, M. Meyer, F. Brégier, V. Chaleix, V. Sol, and N. Lebouvier, “Biosorption of nickel ions Ni2+ by natural and modified Pinus caribaea Morelet sawdust,” Heliyon, vol. 8, no. 2, 2022,

doi: 10.1016/j.heliyon.2022.e08842.

[32] U. O. Aigbe, K. E. Ukhurebor, R. B. Onyancha, B. Okundaye, K. Pal, O. A. Osibote, E. L. Esiekpe, H. S. Kusuma, and H. Darmokoesoemo, “A Facile Review on the Sorption of Heavy Metals and Dyes Using Bionanocomposites,” Adsorpt. Sci. Technol., vol. 2022, pp. 1–36, 2022,

doi: 10.1155/2022/8030175.


Refbacks

  • There are currently no refbacks.