Metal Ion Complex Compound Fe(III) with Pyrazoline Derivative Ligand as Cd(II) and Zn(II) Heavy Metal Ion Sensor Based on Fluorescence

Yulian Syahputri, Ani Iryani, Linda Jati Kusumawardani, Shinta Safitri

Abstract

The purpose of this research is to synthesize the complex compound of ion Fe3+ with para-di-2-(1-phenyl-3-pyridyl-4,5-dihydro-1H-pyrazole-5-yl)benzene ligand and its potentials as the sensor of Cd2+ and Zn2+ heavy metal ions based on fluorescence. Complex compounds are characterized with a Fourier-Transform Infrared (FTIR) Spectrophotometer, Ultraviolet-Visible (UV-Vis) Spectrophotometer and Spectrofluorometer. Then, a complex compound fluorosensor study is conducted by adding Cd2+ and Zn2+ heavy metal ions using a UV-Vis Spectrophotometer and Spectrofluorometer. The results show that the synthesis of the complex compound formed by reacting Fe metal and pyrazoline derived ligands generates brown precipitate with a yield of 51.25% and a range of melting points of  252.2-253.2 . The result of characterization with FTIR (cm-1) generates 3380.20 (tertiary amine), 2922.31-2852.42 (C-H pyridine), 2360.38 (C=C aromatic), 1595.93-1451.88 (C=N), 1232.25-982.66 (C-N pyrazoline), 751.61-690.29 (C-H aromatic) and 366.54-339.44 (Fe-N). The Uv-Vis spectrophotometer study with a concentration of 5x10-5 M showed two absorption peaks at 246 nm, 354 nm, and 440 nm. The resulting fluorescence intensity of 813.1 a.u. at the wavelenght of 500 nm. The study of complex compound fluorescence shows that the addition of Cd2+ heavy metal ion can be made as fluorosensor with turn-on (enhancement) type, while the complex compound in the addition of Zn2+ heavy metal ion can be made as fluorosensor with turn off-on (quenching-enhancement) type.

Keywords

Fluorosensor; Heavy Metal; Complex Compound; Pyrazoline Derivative

Full Text:

PDF

References

[1] N. Cahyani, D.T.F, Lumban Batu, & S. Sulistiono., “Kandungan Logam Berat Pb, Hg, Cd, dan Cu Pada Daging Ikan Rejung (Sillago Sihama) di Estuari Sungai Donan, Cilacap, Jawa Tengah,” JPHPI, vol.19, no.3, pp.267-276, 2016.

DOI: 10.17844/jphpi.v19i3.15090.

[2] Irhamni, “Serapan Logam Berat Esensial dan Non Esensial pada Air Lindi TPA Kota Banda Aceh dalam Mewujudkan Pembangunan Berkelanjutan,” Jurnal Serambi Engineering, vol.2, no.3, pp. 134-140, 2017.

DOI: 10.32672/jse.v2i1.337.

[3] E. S.Hermawati, S. Suhartana, & T. Taslimah, “Kontaminasi Logam Berat Pada Makanan dan Dampaknya Pada Kesehatan,” TEKNOBUGA, vol. 1, no. 1, pp. 56-65, 2014.

DOI: 10.15294/teknobuga.v1i1.6405.

[4] J. Köhler, & H. D. Wiemhöfer” Festkörperchemie 1999”. Nachrichten aus der Chemie, vol. 48, no3, pp. 254-262, 2000.

[5] E. S.Hermawati, S.Suhartana, & T Taslimah, “Sintesis dan Karakterisasi Senyawa Kompleks Zn(II)-8-Hidroksikuinolin,” Jurnal Kimia Sains dan Aplikasi, vol.19, no.3, pp. 94-98, 2016.

DOI: 10.14710/jksa.19.3.94-98.

[6] J.V. Mehta, S. B. Gajera, & M. N. Patel, “Design, Synthesis and Biological Evaluation of Pyrazoline Nucleus Based Homoleptic Ru(III) Compounds,” Patel, Med. Chem. Communication, vol.7, no. 7, pp. 1-3, 2016.

DOI: 10.1039/C6MD00149A.

[7] A. Ciupa, M. F.Mahon, A. Paul, & L. Caggiano, “Simple Pyrazoline and Pyrazole “Turn on” Fluorescent Sensors Selective for Cd2+ and Zn2+ in MeCN,” Organic & Biomolecular Chemistry, 10 (44), pp. 8753-8757, 2012.

DOI: 10.1039/C2OB26608C.

[8] S. Hu, Zhang, S., Hu, Y., Tao, Q., & Wu, A., “A New Selective Pyrazoline Based Fluorescent Chemosensor for Cu2+ in Aqueous Solution,” Dyes and Pigments, vol. 96, pp. 509-515, 2013.

DOi: 10.1016/j.dyepig.2012.09.019.

[9] Y. Z. Hakim and A. Zulys, “A Fluorescence Study of Pyrazole Derivative 2-(1,5-diphenyl-4,5-dihydro1H-pyrazole-3-yl)pyridine Upon Addition of La3+ and Eu3+ Ions,” International Conference on Materials, Manufacturing and Mechanical Engineering, pp. 362–366, 2016.

DOI:10.12783/dtmse/mmme2016/10140.

[10] G. Yang, X. Meng, S. Fang, H. Duan, L. Wang, & Z. Wang., “A highly selective colorimetric fluorescent probe for detection of Hg2+ and its application on test strips,” RCS Advances. vol. 9, no 15, pp. 8529- 8536, 2019.

DOI: 10.1039/C9RA00797K.

[11] Y. Syahputri and L.J. Kusumawardani., “Fluorosensor of Hg2+ and Cu2+ Heavy Metal Ions from Complex Compound of Co2+ and para-di-2-(1-phenyl-3-pyridyl-4,5-dihydro-1H-pyrazole-5-yl)benzene Ligand,” Jurnal Kimia dan Pendidikan Kimia, vol.6, no.1, pp. 89-97, 2021.

DOI: 10.20961/jkpk.v6i1.50537.

[12] Bozkurt, E., Gul, H. I., & Mete, E. Solvent and substituent effect on the photophysical properties of pyrazoline derivatives: A spectroscopic study. Journal of Photochemistry and Photobiology A: Chemistry, 352, 35–42, 2018.

DOI: 10.1016/j.jphotochem.2017.10.010.

[13] P. Kumar., S. Gadiyaram., and Dr. D.A. Jose. Simple Iron (III) Complex Based Highly Sensitive Fluorescent Off-On Sensor for the Detection of Trace Amount in Organic Solvents and Edible Oilseeds. Chemistry Europe, 5(34), pp. 10648-10655, 2020.

DOI: 10.1002/slct.202002530.

[14] M.S. Muneera and J. Joseph, “Design, Synthesis, Structural Elucidation, Pharmacological Evaluation of Metal Complexes with Pyrazoline Derivatives,” ScienceDirect Journal of Photochemistry & Photobiology, B: Biology 163, pp. 57-68, 2016.

DOI: 10.1016/j.jphotobiol.2016.08.010.

[15] L.R. Harera, T. Sudiarti, & M. Wulandari , “Sintesis Cu(II)-Imprinted Polymers untuk Ekstraksi Fasa Padat dan Prakonsentrasi Ion Tembaga(II) dengan Ligan Pengkhelat 4-(2-Pyridylazo) Recorcinol,” al Kimiya, vol.2, no.1, pp. 30-39, 2021.

DOI: 10.15575/ak.v2i1.350.

[16] S.Y. Prabawati, A. F., Setiawan & A. F. Agustina, “Sintesis Senyawa 1,4-bis[(2-hidroksi-3-metoksi-5-formaldehid-fenil)-metil] piperazin dari Bahan Dasar Vanillin dan Uji Aktivitasnya sebagai Zat Antioksidan,” Kaunia: Integration and Interconnection Islam and Science, 8(1), pp. 30–43, 2012.

DOI: 10.14421/kaunia.1039.

[17] J.Skieneh, B. K. Najafabadi, S. Horne, & S. Rohani, Crystallization of Esomeprazole Magnesium Water/Butanol Solvate. Molecules, 21(4), 2–11, 2016.

DOI: 10.3390/molecules21040544.

[18] N. H.Nasaruddin, S. N. Ahmad, H. Bahron, N. M. M. A. Rahman, & N. S. M. Yusof, “Schiff bases and their La(III) complexes: Conventional and microwave-assisted synthesis, physicochemical and spectroscopic analysis. Malaysian Journal of Chemistry, 23(2), 91–101, 2021.

DOI: 10.55373/mjchem.v23i2.1002.

[19] D.L. Pavia, M.L. Gary and S.K. George “Introduction to Spectroscopy,” Thomson Learning: Singapura (3rd Ed), 2001.

ISBN: 9780495555759.

[20] M. Revanasiddappa, T. Suresh, S.Khasim, S. C. Raghavendray, C.Basavaraja, & S. D. Angadi, “Transition Metal Complexes of 1,4(2’-Hydroxyphenyl-1-yl) di-imino azine: Synthesis, Characterization and Antimicrobial,” E-Journal of Chemistry, vol.5, no.2, pp. 395-403, 2008.

DOI: 10.1155/2008/328961.

[21] J.R. Lacowicz, “Principle of Fluorescence Spectroscopy,” University of Maryland School of Medicine Baltimore, Maryland, USA (3rd Ed), 2006.

DOI: 10.1007/978-0-387-46312-4.

[22] M. Mameli et al., “A Selective, Nontoxic, Off-On Fluorescent Molecular Sensor Based On 8-Hydroxyquinoline for Probing Cd2+ in Living Cells,” Chemistry A European Journal, 16, pp. 919-930, 2010.

DOI: 10.1002/chem.200902005.

Refbacks

  • There are currently no refbacks.