FLUOROSENSOR OF Hg2+ AND Cu2+ HEAVY METAL IONS FROM COMPLEX COMPOUND OF Co2+ AND para-di-2-(1-phenyl-3-pyridyl-4,5-dihydro-1H-pyrazole-5-yl)benzene LIGAND

Yulian Syahputri, Linda Jati Kusumawardani


Industrial activities like waste disposals and domestic activities may produce wastes in form of heavy metal like Hg2+ and Cu2+. The purpose of this research is to synthesize the complex compound of metal ion Co2+ and para-di-2-(1-phenyl-3-pyridyl-4,5-dihydro-1H-pyrazole-5-il)benzene ligand and its potentials as the fluorosensor of Hg2+ and Cu2+ heavy metal ions. Complex compounds are characterized with fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis) spectrophotometer, and spectrofluorometer. After that, complex compound fluorosensor study is conducted by adding Hg2+ and Cu2+ heavy metal ions using spectrofluorometer. The results show that the synthesis of complex compound generates brownish yellow sediment with the yield of 36% and melting point of 243.2oC. The result of characterization with FTIR (KBr, cm-1) generates 3060.65 (C-H aromatic), 2851-2919.46 (C-H pyridine), 2363.23 and 1640.14 (C=N), 1493.24-1594.5 (C=C), and 1326.38-1019.74 (C-N). The result of ultraviolet-visible spectrophotometer scanning obtains two absorption peaks on 250 nm and 366 nm in the concentration of 5x10-5 M with the respective molar absorptivity of log Ɛ 4.44 and log Ɛ 4.23. High molar absorptivity value shows that the complex compound has high fluorescence intensity. It is proven with the generation of emission fluorescence intensity of 1150 a.u. at the wavelength of 470 nm. The study of complex compound fluorescence in the addition of Hg2+ and Cu2+ heavy metal ions with spectrofluorometer shows that the complex compound in the addition of Hg2+ heavy metal ion can be made as fluorosensor with turn-on type while the complex compound in the addition of Cu2+ heavy metal ion can be made as fluorosensor with turn-off type.


Fluorosensor, Cobalt Metal, Complex Compound, Pyrazoline

Full Text:



N. Cahyani, D.T.F, Lumban Batu, S. Sulistiono., “Kandungan Logam Berat Pb, Hg, Cd, Dan Cu Pada Daging Ikan Rejung (Sillago Sihama) Di Estuari Sungai Donan, Cilacap, Jawa Tengah,” JPHPI,vol.19,no.3, pp.267-276, 2016.

doi: 10.17844/jphpi.v19i3.15090.

M.M. Li, W.B. Zhao, T.T. Zhang, W.L. Fan, Y. Xu, Y. Xiao, J.Y. Miao, & B.X. Zhao., “A New Thiophenyl Pyrazoline Fluorescent Probe for Cu2+ in Aqueous Solution and Imaging in Live Cell,” J Fluorese,vol. 6 no. 1, 1-7, 2013.

doi: 10.1007/s10895-013-1259-x.

W.C. Lin, C.Y. Wu, Z.H. Liu, C.Y. Lin, & Y.P. Yen., “A new selective colorimetric and fluorescent sensor for Hg2+ and Cu2+ based on a thiourea featuring a pyrene unit,” Talanta, vol. 81, pp. 1209-1215, 2010.

doi: 10.1016/j.talanta.2010.02.012.

Rosihan dan Husaini, “Logam Berat Sekitar Manusia,” Lambung Mangkurat University Press: Banjarmasin, 2017.

ISBN: 978-602-6483-47-8.

S.H.J. Sari, J.F.A. Kirana, dan Guntur., “Analisis Kandungan Logam Berat Hg dan Cu Terlarut di Perairan Pesisir Wonorejo, Pantai Timur Surabaya,” Jurnal Pendidikan Geografi. vol.22, no.1, pp 1-9, 2017.

doi: 10.17977/jpg.v22i1.375.

Ciupa, M.F, Mahon, P.A. De Bank, and L. Caggiano., “Simple pyrazoline and pyrazole “turn on” fluorescent sensors selective for Cd2+ and Zn2+ in MeCN,” Organic & Biomolecular Chemistry, 10 (44), 8753-8757, 2012.


S. Hu, S. Zhang, Y. Hu, Q. Tao, & A. Wu., “A new selective pyrazoline-based fluorescent chemosensor for Cu2+ in aqueous solution,” Dyes and Pigments. Vol.96: 509-515, 2013.

doi: 10.1016/j.dyepig.2012.09.019.

Y. Saria, L. Lucyanti, N. Hidayati, dan A. Lesbani, “Sintesis Senyawa Kompleks Kobalt dengan Asetilasetonato,” Jurnal Penelitian Sains, vol.15, no.3,pp. 115-117, 2012.

doi: 10.26554/jps.v15i3.107.

G. Yang, X. Meng, S. Fang, H. Duan, L. Wang, and Z. Wang., “A highly selective colorimetric fluorescent probe for detection of Hg2+ and its application on test strips,” RCS Advances.vol. 9, no 15, pp. 8529-8536, 2019.

doi: 10.1039/C9RA00797K.

E.S. Hermawati, Suhartana, dan Taslimah., “Sintesis dan Karakterisasi senyawa kompleks Zn(II)-8-Hidroksikuinolin,” Jurnal Kimia Sains dan Aplikasi. Vol.19, no3, pp. 94-98, 2016.

doi: 10.14710/jksa.19.3.94-98.

J.V. Mehta, S.B. Gajera, and M.N. Patel., “Design, synthesis and biological evaluation of pyrazoline nucleus based homoleptic Ru(III) compounds,” Patel, Med. Chem. Commun.vol.7, no. 7, pp1-3, 2016.

doi: 10.1039/C6MD00149A.

A.N. Kharat, A. Bakhoda, G. Bruno, and A.H. Rudbari., “Urease inhibitory activities of ZnBr2 and ZnI2 complexes of terpyridine derivatives: Systematic investigation of aryl substituents on urease inhibitory activities,” Polyhedron, vol.45, pp. 9-14, 2012.

doi: 10.1016/j.poly.2012.07.035.

D.L. Pavia, G. Lampman, and G. Kriz., “Introduction To Spectroscopy,” Third Edition. Thomson Learning: Singapura, 2001.


Y.Z. Hakim and A. Zulys, “A Fluorescence Study of Pyrazole Derivative 2-(1,5-diphenyl-4,5-dihydro-1H-pyrazole-3-yl)pyridine Upon Addition of La3+ and Eu3+ Ions,” International Conference on Materials, Manufacturing and Mechanical Engineering, pp. 362–366, 2016.

doi: 10.12783/dtmse/mmme2016/10140.

J.R. Lacowicz, “Principle of Fluorescence Spectroscopy,” University of Maryland School of Medicine Baltimore, Maryland, USA (3rd Ed), 2006.

doi: 10.1007/978-0-387-46312-4.

B. Malau and A. Zulys. “Ligand 4’-(4-carboxyphenyl)-2,2’:6’,2”-terpyridine Grafted With TiO2–Complexation With The Ions Metal Transition And Application As Fluorosensor For Na+ Ion,” IOP. Vol..18,pp.. 1-9, 2017.

doi: 10.1088/1757-899X/188/1/012044.

P. Ding, X. Xin, L. Zhao, Z. Cie, Q. Zhang, J. Jiao, and G. Xu., “On–off–on fluorescent oligomer as a chemosensor for the detection of manganese(VII), sulfur(II) and aldehydes based on the inner filter effect,” RSC Advances. Vol.7, no.6, pp. 3051-3058 2017.

doi: 10.1039/C6RA25583C.


  • There are currently no refbacks.