Study of Virtual Molecular Docking of Avocados Compounds against Pseudomonas aeruginosa (5N5H) by Carbapenemase using DOCK 6 Algorithm
Abstract
Antimicrobial resistance from bacteria is a global health problem that can cause death, and the cause is the emergence of carbapenem resistance Pseudomonas aeruginosa through VIM (Verona integron-encode metallo-β-lactamase), which causes the carbapenem class of antibiotics not to work properly. This species is a gram-negative bacteria which is the main cause of nosocomial pneumonia infection. This study aims to determine in silico inhibitory activity of 50 compounds obtained from avocado (Persea Americana Mill) on VIM, preventing carbapenem antibiotic resistance. The molecular docking process was carried out to test carbapenem's antibiotic resistance control activity by 50 compounds. Docking using DOCK 6 software with a flexible and rigid method, Molecular docking on a protein with PDB ID 5N5H, The target protein was prepared using the Chimera application. Visualization of ligand-protein interactions was carried out with PyMOL and PLIP. The results of the native ligand grid score obtained by each method are -63.013 kcal/mol (Flexible) and -64.032 kcal/mol (Rigid). The best test ligands in the flexible method are 44257090, 14282775 and 44257819, and the grid score are -77.474, -75.274 and -73.219 kcal/mol. The best test ligands in the rigid method are 5280637, 14282775 and 5490064; the grid score is -62.191, -61.714, and -60.453 kcal/mol. The results of the test ligands can provide a better grid score than native ligands, namely in the flexible method. However, the rigid method of grid score results is no better than the native ligand. A good result is that the test ligand grid score is smaller than native ligands, so it has less energy to bind to the active site.
Keywords
Full Text:
PDFReferences
Munaf S., Chaidir J., 1994, Obat Antimikroba. Farmakologi UNSRI, EGC: Jakarta,
J. M Munita and C. A Arias, “Mechanisms of Antibiotic Resistance,” Microbiology Spectrum, vol. 4 no. 2, 2016,
doi: 10.1128/microbiolspec.VMBF-0016-2015
F. Prestinaci P. Pezzotti, P. & A. Pantosti, Antimicrobial resistance: a global multifaceted phenomenon,” Phatogens and Global Health, vol. 109, no. 7, pp. 309-318, 2015,
doi: 10.1179/2047773215Y.0000000030
M. Georgios, “Carbapenem resistance: overview of the problem and future perspectives,” Therapeutic Advances in Infectious Disease, vol. 3, no. 1, pp. 15-21, 2016,
doi: 10.1177/2049936115621709.
T. R. Walsh, “Emerging Carbapenemases: A Global Perspective,” Int J Antimicrob Agents, vol. 36, no. 3, pp. 8-14, 2010, doi: 10.1016/S0924-8579(10)70004-2.
L. Poirel, J.M.Rodríguez-Martínez, N. Al Naiemi, Y. J. Debets-Ossenkopp, & P. Nordmann, “Characterization of DIM-1, an integron-encoded metallo-beta-lactamase from a Pseudomonas stutzeri clinical isolate in the Netherlands,” Antimicrob Agents Chemother, vol. 54 no.6, pp. 2420-2424, 2010,
L.Lauretti, M.L.Riccio, A.G. Mazzariol, G. Cornaglia, G. Amicosante, R. Fontana, & G. M. Rossolini, “Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate,” Antimicrobial agents and chemotherapy, vol. 43, no. 7, pp. 1584-1590, 1999,
.
G. Malkocoglu, G. Malkoçoğlu, , E. Aktaş, B. Bayraktar, B. Otlu, B., & M. E. Bulut, “VIM-1, VIM-2, and GES-5 Carbapenemases Among Pseudomonas aeruginosa Isolates at a Tertiary Hospital in Istanbul, Turkey,” Microbial Drug Resistance, vol. 23, no. 3, pp. 328-334, 2017,
R. N. Nwaoguikpe, “Biochemical composition and antimicrobial activities of seed extracts of avocado (Persea americana),” Journal of Microbiology and Antimicrobials, vol. 3, no. 7, pp. 184-190. 2011,
I. Wijaya, “The Potential of Avocado Leaves (Persea Americana Mill) as Antibacterial, Jurnal Ilmiah Kesehatan Sandi Husada, vol. 9, no. 2, pp. 695-701, 2020,
R. Salimraj, P. Hinchliffe, M Kosmopoulou, J. M., Tyrrell, J. Brem, S.S. van Berkel, & J.Spencer, “Crystal Structures of VIM-1 Complexes Explain Active Site Heterogeneity In VIM-Class Metallo-Β-Lactamases,” The Febs Journal, vol. 286, no. 1, pp. 169–183, 2018,
Y. M. Lubis, Z. Chaidir, R. Refilda, & A. Dharma, “Antimicrobial Activity of Perseaamericana Peel Extract from North Sumatera, Indonesia, against Gram Positive and Gram Negative Bacteria in Vitro,” American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), vol. 38, no. 2, pp. 247-251, 2017, ISSN (Print) 2313-4410, Google Scholar .
R. J. T Servillon,M.C.C Dingal, M. C. Lusica, & M. K.A. Yamson, “Phytochemical Screening and in-vitro Antibacterial Evaluation of Persea americana (Avocado) Crude Peel Extract,” Optima, vol. 1, no. 1, 2013,
Kusuma M.K. and R. Susilowati, “In Silico Study of Avocado (Persea Americana Mill.) Seed Compounds Against PBP2a Receptor on Staphylococcus aureus,” Bioinformatics and Biomedical Research Journal, vol. 1, no. 2, pp. 45-48, 2018.
Basuki B. Purnomo. Dasar-Dasar Urologi, CV Sagung Seto: Jakarta, 2012.
W.J. Allen, T.E. Balius, S. Mukherjee, S.R. Brozell, D.T. Moustakas, P. T., Lang, & R.C.Rizzo, “DOCK 6: Impact of New Features and Current Docking Performance,” J Comput Chem, vol. 36, no. 15. pp 1132-1156, 2006, doi: 10.1002/jcc.23905.
A. R. Palacios, M. A. Rossi, G. S. Mahler, & A. J. Vila, “Metallo-β-lactamase inhibitors inspired on snapshots from the catalytic mechanism”. Biomolecules, Vol.10 no. 6. pp.854, 2020
W. J.Allen, T. Balius, S. Brozell, B. Fochtman, L. Jiang, , T. D . McGee Jr & I.Kuntz. DOCK 6.9 Users Manual. University of California, California, 27.2018.
X. Meng, H. X. Zhang, M. Mezei, & M. Cui, “Molecular Docking: a Powerful Approach for Structure-Based Drug Discover”, Comput Aided Drug Desi, vol. 7, no. 2, pp. 146-157, 2011,
doi: 10.2174/157340911795677602.
A.H. Santoyo, A.Y. Tenorio-Barajas, V. Altuzar, H. Vivanco-Cid, & C. Mendoza-Barrera, “Protein-Protein and Protein-Ligand Docking”, In Tech, chapter 3, pp. 64- 81, 2013,
B. Santoso, D. Hanwar, & A. Suhendi, “Prediksi 3D-Molekular Aktivitas Turunan Senyawa Polihidroksi Zerumbon terhadap Glikogen Sintase Kinase-3 Beta (GSK-3β) menggunakan DOCK6,” Prosiding Seminar Nasional dan Internasional, pp. 1-7, 2015,
G.M. Morris and M. Lim-Wilb, “Molecular docking”, Methods Mol Biol, vol. 443, pp. 365-82, 2008,
doi: 10.1007/978-1-59745-177-2_19.
R. Rollando, “Pendekatan Struktur Aktivitas dan Penambatan Molekul Senyawa 2-iminoethyl 2-(2-(1- hydroxypentan-2-yl) phenyl) acetate Hasil Isolasi Fungi Endofit Genus Fusarium sp pada Enzim β-ketoasil-ACP KasA Sintase dan Enzim Asam Mikolat Siklopropana Sintase, Pharmaceutical Journal of Indonesia, vol. 3, no. 2, pp. 45-51, 2018, ISSN 2461-114X,
B. Santoso, M.R. As Sabiq, M. Da’i, D. Hanwar, & A. Suhendi, “Penilaian Hasil Molecular Docking Turunan Zerumbon Sebagai Inhibitor Ptp1b menggunakan Dock6”, Prosiding Seminar Nasional Current Challenges in Drug Use and Development Tantangan Terkini Perkembangan Obat dan Aplikasi Klinis, pp. 221-228, 2014, ISBN: 978-602-9030-89-1.
Arwansyah, L. Ambarsari, & T.I. Sumaryada, “Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat”, Journal Current Biochemistry, vol. 1, no. 1, pp. 11-19, 2014,
S.Damayanti, K Khonsa, & T. Amelia, “Antiviral Activity and Toxicity Prediction of Compounds Contained in Figs (Ficus carica L.) by In Silico Method,” Indonesian Journal of Pharmaceutical Science and Technology, vol. 8, no. 1, pp. 21-33, 2021,
doi: 10.24198/ijpst.v8i1.29868.
H.R. Bosshard, D. N. Marti, & I. Jelesarov “Protein Stabilization by Salt Bridges: Concepts, Experimental Approaches and Clarification of Some Misunderstandings”, J. Mol. Recogn, vol. 17, no. 1, pp. 1-16, 2004,
Refbacks
- There are currently no refbacks.