Antioxidant Potency of Cassumunin A-C Compounds from Bangle Rhizome (Zingiber cassumunar) by Molecular Docking on Human ROS-1 kinase Receptors

Dwi Utami, Wahyu Yuliana Solikah, Nurkhasanah Mahfudh

Abstract

Antioxidants play an  role in human health by fighting oxidative stress and preventing chronic disease. Nowadays, molecular docking is used  Bangle rhizome (Zingiber cassumunar) has  a derivative of curcuminoid, cassumunin A, cassumunin B, and cassumunin C. This study was designed to determine the value of binding affinities between cassumunins ligands on human ROS1 kinase receptors, related to their antioxidant activity with ascorbic acid and tocopherol. One set of computational programs is Autodock Tools, Biovia Discovery Studio, and Command Prompt has prepared. These docking results presented the binding affinity values of cassumunin A, cassumunin B, cassumunin C, ascorbic acid, and tocopherol were -9.4 kcal/mol, -9.7 kcal/mol, -9.0 kcal/mol, -5.2 kcal/mol, and -8.1 kcal/mol respectively. RMSD value for the five ligands was ≤ 2Å, showed the validity of the docking results. Cassumunin A-C compound  higher affinity compared to ascorbic acid and tocopherol. Based on this computational study, cassumunin A-C the potential compounds to be developed as potent antioxidant agents from natural resources.

Keywords

antioxidant; Bangle rhizome; cassumunin; ROS receptor; molecular docking

Full Text:

PDF

References

[1] L. Zuo, T. Zhou, B. K. Pannell, A. C. Ziegler, and T. M. Best, “Biological and physiological role of reactive oxygen species - the good, the bad and the ugly,” Acta Physiol., vol. 214, no. 3, pp. 329–348, 2015,
doi: 10.1111/apha.12515.

[2] A. Singh, R. Kukreti, L. Saso, and S. Kukreti, “Oxidative stress: A key modulator in neurodegenerative diseases,” Molecules, vol. 24, no. 8, pp. 1–20, 2019,
doi: 10.3390/molecules24081583.

[3] F. Ahmadinejad, S. G. Møller, M. Hashemzadeh-Chaleshtori, G. Bidkhori, and M. S. Jami, “Molecular mechanisms behind free radical scavengers function against oxidative stress,” Antioxidants, vol. 6, no. 3, pp. 1–15, 2017,
doi: 10.3390/antiox6030051.

[4] R. Robson, A. R. Kundur, and I. Singh, “Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 12, no. 3, pp. 455–462, 2018,
doi: 10.1016/j.dsx.2017.12.029.

[5] B. Niemann, S. Rohrbach, M. R. Miller, D. E. Newby, V. Fuster, and J. C. Kovacic, “Oxidative Stress and Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series HHS Public Access,” J Am Coll Cardiol, vol. 70, no. 2, pp. 230–251, 2017,
doi: 10.1016/j.jacc.2017.05.043.

[6] S. Reuter, S. C. Gupta, M. M. Chaturvedi, and B. B. Aggarwal, “Oxidative stress, inflammation, and cancer: How are they linked?,” Free Radic. Biol. Med., vol. 49, no. 11, pp. 1603–1616, 2010,
doi: 10.1016/j.freeradbiomed.2010.09.006.

[7] E. D. Cömert and V. Gökmen, “Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior, and Physiological Importance,” Compr. Rev. Food Sci. Food Saf., vol. 16, no. 3, pp. 382–399, 2017,
doi: 10.1111/1541-4337.12263.

[8] M. Mihǎşan, “What in silico molecular docking can do for the ‘bench-working biologists,’” J. Biosci., vol. 37, no. 6, pp. 1089–1095, 2012,
doi: 10.1007/s12038-012-9273-8.

[9] M. Shibuya, H. Hanafusa, and P. C. Balduzzi, “ Cellular Sequences Related to Three New onc Genes of Avian Sarcoma Virus ( fps, yes , and ros ) and Their Expression in Normal and Transformed Cells ,” J. Virol., vol. 42, no. 1, pp. 143–152, 1982,
doi: 10.1128/jvi.42.1.143-152.1982.

[10] R. Vanajothi, H. Vedagiri, M. M. Al-Ansari, L. A. Al-Humaid, and P. Kumpati, “Pharmacophore based virtual screening, molecular docking and molecular dynamic simulation studies for finding ROS1 kinase inhibitors as potential drug molecules,” J. Biomol. Struct. Dyn., vol. 0, no. 0, pp. 1–15, 2020,
doi: 10.1080/07391102.2020.1847195.

[11] B. Durga and A. Julius, “In-Silico Docking studies of thymoquinone as potential anti-cancer drug target on Lung Cancer Cells,” vol. 07, no. 03, pp. 1706–1716, 2020, [Online].
Available: googlescholar

[12] R. S. Verma, “Ethnobotany, phytochemistry and pharmacology of Zingiber cassumunar Roxb. (Zingiberaceae),” J. Sci. Food Agric., vol. 98, no. 1, pp. 1053–1057, 2018,
doi: 10.1055/s-0031-1273656.

[13] M. Sharifi-Rad, E. M. Varoni, B. Salehi, J. Sharifi-Rad, K. R. Matthews, S. A. Ayatollahi, F. Kobarfard, S. A. Ibrahim, D. Mnayer, Z. A. Zakaria, M. Sharifi-Rad, Z. Yousaf, M. Iriti, A. Basile, and D. Rigano, “Plants of the genus zingiber as a source of bioactive phytochemicals: From tradition to pharmacy,” Molecules, vol. 22, no. 12, pp. 1–20, 2017,
doi: 10.3390/molecules22122145.

[14] T. Masuda, A. Jitoe, and T. J. Mabry, “Isolation and structure determination of cassumunarins A, B, and C: New anti-inflammatory antioxidants from a tropical ginger, Zingiber cassumunar,” J. Am. Oil Chem. Soc., vol. 72, no. 9, pp. 1053–1057, 1995,
doi: 10.1007/BF02660721.

[15] T. Masuda and A. Jitoe, “Antioxidative and Antiinflammatory Compounds from Tropical Gingers: Isolation, Structure Determination, and Activities of Cassumunins A, B, and C, New Complex Curcuminoids from Zingiber cassumunar,” J. Agric. Food Chem., vol. 42, no. 9, pp. 1850–1856, 1994,
doi: 10.1021/jf00045a004.

[16] A. A. Pratama, Y. Rifai, and A. Marzuki, “Docking Molekuler Senyawa 5,5’-Dibromometilsesamin,” Maj. Farm. dan Farmakol., vol. 21, no. 3, pp. 67–69, 2017,
doi: 10.20956/mff.v21i3.6857.

[17] A. Talevi, “Computer-aided drug design: An overview,” Methods Mol. Biol., vol. 1762, no. 5, pp. 1–19, 2018,
doi: 10.1007/978-1-4939-7756-7_1.

[18] L. Pinzi and G. Rastelli, “Molecular docking: Shifting paradigms in drug discovery,” Int. J. Mol. Sci., vol. 20, no. 18, 2019,
doi: 10.3390/ijms20184331.

[19] M. A. de Brito, “Computational Drug Design – A Guide for Computational and Medicinal Chemists,” J. Pharm. Pharm. Sci., vol. 14, no. 2, p. 215, 2011,
doi: 10.18433/j3k59c.

[20] B. Mukesh and K. Rakesh, “ISSN 2229-3566 Review Article MOLECULAR DOCKING : A REVIEW Bachwani Mukesh *, Kumar Rakesh,” Int. J. Res. Ayurveda Pharm., vol. 2, no. 6, pp. 1746–1751, 2011.
Available: googlescholar

[21] L. G. Ferreira, R. N. Dos Santos, G. Oliva, and A. D. Andricopulo, Molecular docking and structure-based drug design strategies, vol. 20, no. 7. 2015.
doi : 10.3390/molecules200713384

[22] O. Trott and A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” J. Comput. Chem., vol. 31, no. 2, p. NA–NA, 2009,
doi: 10.1002/jcc.21334.

[23] B. D. Bursulaya, M. Totrov, R. Abagyan, and C. L. Brooks, “Comparative study of several algorithms for flexible ligand docking,” J. Comput. Aided. Mol. Des., vol. 17, no. 11, pp. 755–763, 2003,
doi: 10.1023/B:JCAM.0000017496.76572.6f.

[24] C. Chen and T. K. Ah-Ng, “Dietary cancer-chemopreventive compounds: From signaling and gene expression to pharmacological effects,” Trends Pharmacol. Sci., vol. 26, no. 6, pp. 318–326, 2005,
doi: 10.1016/j.tips.2005.04.004.

[25] H. Nakagami, A. Pitzschke, and H. Hirt, “Emerging MAP kinase pathways in plant stress signalling,” Trends Plant Sci., vol. 10, no. 7, pp. 339–346, 2005,
doi: 10.1016/j.tplants.2005.05.009.

[26] A. K. Sinha, M. Jaggi, B. Raghuram, and N. Tuteja, “Mitogen-activated protein kinase signaling in plants under abiotic stress,” Plant Signal. Behav., vol. 6, no. 2, pp. 196–203, 2011,
doi: 10.4161/psb.6.2.14701.

[27] T. Masuda, A. Jitoe, and N. Nakatani, “ Structures of Cassumunin A, B, and C, New Potent Antioxidants from Zingiber cassumunar ,” Chemistry Letters, vol. 22, no. 1. pp. 189–192, 1993,
doi: 10.1246/cl.1993.189.

[28] M. Weni, M. Safithri, and D. S. H. Seno, “Molecular Docking of Active Compounds Piper crocatum on the A-Glucosidase Enzyme as Antidiabetic,” Indones. J. Pharm. Sci. Technol., vol. 7, no. 2, p. 64, 2020,
doi: 10.24198/ijpst.v7i2.21120.

[29] C. López-Alarcón and A. Denicola, “Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays,” Anal. Chim. Acta, vol. 763, pp. 1–10, 2013,
doi: 10.1016/j.aca.2012.11.051.

[30] S. H. I. Ou, J. Tan, Y. Yen, and R. A. Soo, “ROS1 as a ‘druggable’ receptor tyrosine kinase: Lessons learned from inhibiting the ALK pathway,” Expert Rev. Anticancer Ther., vol. 12, no. 4, pp. 447–456, 2012,
doi: 10.1586/era.12.17.

[31] N. Nurkhasanah, N. Sulistyani, and A. D. Sofyan, “The Effect of Ethyl Acetate Fraction of Bangle (Zingiber Cassumunar Roxb.) Rhizome Extracts on Interleukin-10 and Interleukin-14 Expression in Vitro,” vol. 18, pp. 37–42, 2019,
doi: 10.2991/adics-phs-19.2019.8.

[32] N. Sari, Nurkhasanah, and N. Sulistyani, “The antioxidant effect of bangle (Zingiber cassumunar) rhizome extract on superoxide dismutase (sod) activity in hyperlipidemic rats,” Res. J. Chem. Environ., vol. 24, no. 1, pp. 78–81, 2020.
Available: googlescholar

Refbacks

  • There are currently no refbacks.