Preparation of Silver-Chitosan Nanocomposites Colloidal and Film as Antibacteri Material
Abstract
Colloidal nanocomposites silver-chitosan have been made. Silver nanoparticles were produced by chemical reduction methods assisted microwave irradiation using chitosan from crab shells as a reducing agent and stabilizer, AgNO3 as a precursor and NaOH as an accelerator. This study investigated AgNO3 concentration toward localized surface plasmon resonance (LSPR) phenomenon of nanocomposites colloidal. The size and shape of the silver nanoparticles were confirmed by TEM. Furthermore, the stability of the storage was observed for twelve weeks. Colloidal and film nanocomposites silver- chitosan have been made by casting method by drying at room temperature. After that, the film characterization was carried out, including swelling with gravimetry methods and surface morphology using scanning electron microscopy (SEM). Diffusion methods tested colloid antibacterial activity and silver-chitosan nanocomposite film’s against E. Coli and S. Aureus. The results showed that the formation of silver nanoparticles was identified by the LSPR absorption band's appearance at 413-419 nm. The increasing of AgNO3 concentration increased the intensity of the LSPR absorption band. Silver nanoparticles with sizes of about 3-9 nm are spherical. The silver nanoparticles were stable at 12 weeks of storage. The higher AgNO3 concentration tends to increase the swelling of the film. The surface of the silver-chitosan nanocomposite film’s was rougher than that of the chitosan film. The higher the silver nanoparticle concentration, the higher the colloid and film antibacterial activity against E. Coli and S. Aureus.
Keywords
Full Text:
PDFReferences
T. Mutia, “Peranan Serat Alam Untuk Bahan Baku Tekstil Medis Pembalut Luka ( Wound Dressing ),” Arena Tekst., vol. 24, no. 2, pp. 79–93, 2009.
A. K. T. Chang, R. R. Frias, L. V. Alvarez, U. G. Bigol, and J. P. M. D. Guzman, “Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp.,” Biocatal. Agric. Biotechnol., vol. 17, no. July 2018, pp. 189–195, 2019, doi: 10.1016/j.bcab.2018.11.016.
DOI: 10.1016/j.bcab.2018.11.016
I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, and Á. Heras, (2009). Functional characterization of chitin and chitosan. Current chemical biology, 3(2), 203-230. "Functional Characterization of Chitin and Chitosan," Curr. Chem. Biol., vol. 3, no. 2, pp. 203–230, 2012, doi: 10.2174/2212796810903020203.
DOI: 10.2174/187231309788166415
E. Trisnawati, D. Andesti, and A. Saleh, “Pembuatan Kitosan dari Limbah Cangkang Kepiting sebagai Bahan Pengawet Buah Duku dengan Variasi Lama Pengawetan,” J. Tek. Kim., vol. 19, no. 2, pp. 17–26, 2013.
P. K. Sharma and P. Singh, "Antibacterial and antifungal activity of piperazinylbenzothiazine," Der Pharma Chem., vol. 8, no. 5, pp. 191–193, 2016.
DOI:10.22159/ajpcr.2019.v12i7.29915.
D. Yanrita E., “Sintesis Dan Pemanfaatan Kitosan - Alginat Sebagai Membran Ultrafiltrasi Ion K+ (Synthesis and Utilization of Chitosan - Alginate As Membrane Ultrafiltration Ion K+),” UNESA J. Chem., vol. 1, no. 2, pp. 7–13, 2012.
M. N. Islami, N. N. Rupiasih, M. Sumadiyasa, and I. B. Sujana Manuaba, "The Study of Current-Voltage (I-V) Characteristic Curve of Chitosan-Silver Nanoparticle Composite Membrane," Bul. Fis., vol. 19, no. 2, pp. 40–45, 2018, doi: 10.24843/bf.2018.v19.i02.p01.
DOI:10.24843/BF.2018.v19.i02.p01
A. Sirajudin and S. Rahmanisa, “Nanopartikel Perak sebagai Penatalaksanaan Penyakit Infeksi Saluran Kemih Silver Nanoparticles as Management Urinary Tract Infectious Disease,” Majority, vol. 5, pp. 1–5, 2016.
H. A. Ariyanta, “Preparasi Nanopartikel Perak Dengan Metode Reduksi Dan Aplikasinya Sebagai Antibakteri Penyebab Infeksi,” IJCS - Indones. J. Chem. Sci., vol. 3, no. 1, pp. 36–42, 2014.
H. Q. W. T. Sugiyama Doni, “Sintesis nanopartikel perak dan uji aktivitasnya,” Arena Tekst., vol. 26, no. 1, pp. 55–60, 2011, doi: 10.1371/journal.pone.0038977.
DOI:10.1371/journal.pone.0038977
D. K. Boanić, L. V. Trandafilović, A. S. Luyt, and V. Djoković, "'Green' synthesis and optical properties of silver-chitosan complexes and nanocomposites," React. Funct. Polym., vol. 70, no. 11, pp. 869–873, 2010, doi: 10.1016/j.reactfunctpolym.2010.08.001.
DOI:10.1371/journal.pone.0038977
A. Shah, I. Hussain, and G. Murtaza, "Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity," Int. J. Biol. Macromol., vol. 116, pp. 520–529, 2018, doi: 10.1016/j.ijbiomac.2018.05.057.
DOI:10.1016/j.ijbiomac.2018.05.057
G. M. Raghavendra, J. Jung, D. kim, and J. Seo, "Step-reduced synthesis of starch-silver nanoparticles," Int. J. Biol. Macromol., vol. 86, pp. 126–128, 2016, doi: 10.1016/j.ijbiomac.2016.01.057.
DOI:110.1016/j.ijbiomac.2016.01.057
E. Susilowati, Triyono, S. J. Santosa, and I. Kartini, "Synthesis of silver-chitosan nanocomposites colloidal by glucose as reducing agent," Indones. J. Chem., vol. 15, no. 1, pp. 29–35, 2015, doi: 10.22146/ijc.21220.
S. Fatihin, Harjono, and S. B. W. Kusuma, “Sintesis Nanopartikel Perak Menggunakan Bioreduktor Ekstrak Buah Jambu Biji Merah (Psidium guajava L.),” Indones. J. Chem. Sci., vol. 5, no. 3, pp. 174–177, 2016.
E. Susilowati, Maryani, Ashadi, and Marwan, "Fabrication of silver-chitosan nanocomposite films and their antibacterial activity," IOP Conf. Ser. Mater. Sci. Eng., vol. 858, no. 1, 2020.
DOI:10.1088/1757-899X/858/1/012042
S. D. Haryati, S. Darmawati, and W. Wilson, “Perbandingan Efek Ekstrak Buah Alpukat (Persea americana Mill) terhadap Pertumbuhan Bakteri Pseudomonas aeruginosa dengan Metode Disk dan Sumuran,” Pros. Semin. Nas. Publ. Hasil-Hasil Penelit. dan Pengabdi. Masy. Univ. Muhammadiyah Semarang, no. September, pp. 348–352, 2017.
M. Kong, X. G. Chen, K. Xing, and H. J. Park, "Antimicrobial properties of chitosan and mode of action: A state of the art review," Int. J. Food Microbiol., vol. 144, no. 1, pp. 51–63, 2010, doi: 10.1016/j.ijfoodmicro.2010.09.012.
Refbacks
- There are currently no refbacks.