Designing Calorimeter Made from Various Wastes

Ida Farida, Gilang Saeful Akbar, Riri Aisyah

Abstract

A research has been conducted which aims to design a waste-based calorimeter as an alternative to measuring heat for chemistry practicum in schools. Research products developed through the steps of design-based research comprising the steps of analysis, design, and development. The resulting product is a waste-based calorimeter equipped with an automatic stirrer. The container to store the reagent solution on the calorimeter is made of Styrofoam, paper, plastic, melamine, PVC and bamboo. Optimization tool was conducted to determine the heat capacity of the calorimeter and the enthalpy of neutralization. The highest accuracy calorimeter value between 78-97%. Bamboo calorimeter has the highest accuracy value (97%). Styrofoam calorimeter has the lowest accuracy values (78%). Based on the results of the validation and feasibility test it can be concluded that the product is declared valid and feasible.

Keywords

waste-based calorimeter; calorimeter heat capacity; enthalpy change of neutralization

Full Text:

PDF

References

Sari & R. Hidayat, “Pengembangan Keterampilan Berpikir Kreatif Siswa Pada Prraktikum Jenis-Jenis Koloid : Pendekatan Saintifik,” J. Tadris Kim., vol. 1, no. 1, pp. 32–37, 2017.

DOI: 10.15575/jta.v1i1.1155

N. A. Safitri, S. Rahmatullah, Y. Dirgantara, & I. Farida, “Using Case-Based Reasoning To Solve Water Purification Problems,” Adv. Soc. Sci. Educ. Humanit. Res., vol. 261, no. Agst, pp. 107–110, 2018.

DOI: 10.2991/icie-18.2018.19

S. Sari, S. A. Ferawati, I. Farida, O. Sobandi, and R. Kariadinata, “Online based performance assessment for general chemistry laboratory,” in IOP Conference Series: Materials Science and Engineering, vol. 434, no. 1, p. 12190, 2018

DOI: 10.1088/1757-899x/434/1/012190

Y. Prasetyo, R. Yektyastuti, J. Ikhsan, K. Sugiyarto, & M. Sholihah, “Pengaruh Penggunaan Media Pembelajaran Kimia Berbasis Android Terhadap Peningkatan Motivasi Belajar Siswa,” Pros. Semin. Nas. Pendidik. Sains, 2015.

Google Scholar

J. R. Horn, D. Russell, E. A. Lewis, & K. P. Murphy, “van’t Hoff and Calorimetric Enthalpies from Isothermal Titration Calorimetry: Are There Significant Discrepancies?,” Biochemistry, vol. 40, no. 6, pp. 1774–1778, Feb. 2001.

DOI: 10.1021/bi002408e

T. Nilsson & H. Niedderer, “Under-graduate students’ conceptions of enthalpy, enthalpy change and related concepts,” Chem. Educ. Res. Pract., vol. 15, no. 3, pp. 336–353, 2014.

DOI: 10.1039/C2RP20135F

E. Kavanagh, S. Mindel, G. Robertson, & D. E. P. Hughes, “An inexpensive solution calorimeter,” J. Chem. Educ., vol. 85, no. 8, pp. 1129–1130, 2008.

DOI:10.1021/ed085p1129

M. W. Vannatta, M. Richards-Babb, and R. J. Sweeney, “Thermochemistry to the Rescue: A Novel Calorimetry Experiment for General Chemistry,” J. Chem. Educ., vol. 87, no. 11, pp. 1222–1224, Nov. 2010.

DOI:10.1021/ed100036y

R. A. Bailey, "A solution calorimeter and thermistor bridge for under-graduate laboratories" J. Chem. Educ., vol. 58, no.9, pp732,1981.

DOI:10.1021/ed058p732

K. V. Mills & L. W. Guilmette, “Thermo-chemical analysis of neutralization reactions: An introductory discovery experiment,” J. Chem. Educ., vol. 84, no. 2, pp. 326–328, 2007.

DOI:10.1021/ed084p326

T. Tatsuoka, K. Shigedomi, & N. Koga, “Using a Laboratory Inquiry with High School Students to Determine the Reaction Stoichiometry of Neutralization by a Thermochemical Approach,” J. Chem. Educ., vol. 92, no. 9, pp. 1526–1530, 2015.

DOI:10.1021/ed500947t

A. M. R. P. Bopegedera and K. N. R. Perera, “‘Greening’ a Familiar General Chemistry Experiment: Coffee Cup Calorimetry to Determine the Enthalpy of Neutralization of an Acid-Base Reaction and the Specific Heat Capacity of Metals,” J. Chem. Educ., vol. 94, no. 4, pp. 494–499, 2016.

DOI:10.1021/acs.jchemed.6b00189

J. J. Stankus & J. D. Caraway, “Replace-ment of coffee cup calorimeters with fabricated beaker calorimeters,” J. Chem. Educ., vol. 88, no. 12, pp. 1730–1731, 2011.

DOI:10.1021/ed100145u

Marnita, “Peningkatan Kemampuan Berpikir Kritis Siswa MTsN Melalui Pembelajaran Berbasis Masalah Berbantuan Alat Peraga Pompa Hidrolik Sederhana Konsep Tekanan,” J. Pendidik. Almuslim, vol. 4, no. 1, pp. 22–33, 2016.

Google Scholar

I. Farida, I. Helsy, & M. Nurmelati, “Pengembangan Prototype Reaktor Dan Prosedur Eksperimen Pembuatan Biogas Skala Rumah Tangga Dari Sampah Organik Untuk Pembelajaran Kimia,” in Seminar Nasional Sains dan Teknologi, 2015.

Google Scholar

T. Anderson & J. Shattuck, “Design-Based Researh : A Decade of Progress in Education Research?,” Educ. Res., vol. 41, no. 1, pp. 16–25, 2012.

DOI:10.3102/0013189X11428813

A. K. N. Hess & K. Greer, “Designing for Engagement: Using the ADDIE Model to Integrate High-Impact Practices into an Online Information Literacy Course,” Commun. Inf. Lit., vol. 10, no. 2, pp. 264–282, 2016.

DOI:10.15760/comminfolit.2016.10.2.27

Sugiyono, “Metode Penelitian dan Pengembangan,” 2nd ed., Bandung: Alfabeta, 2015, pp. 164–172.

Google Scholar

Y. Munadi, “Media Pembelajaran,” Media Pembelajaran, Jakarta: Gaung persada press pp. 7–8, 2013.

Google Scholar

Y. Munadi, Media pembelajaran sebuah pendekatan, Keempat. Jakarta: Gaung Persada (GP) Press, 2008.

Google Scholar

D. Mayangsari, F. S. Irwansyah, & I. Farida, “The making of metal coating props oriented chemical representa-tion,” in Journal of Physics: Conference Series, vol. 1402, no. 5, p. 55034, 2019.

DOI:10.1088/1742-6596/1402/5/055034

F. Burlian & M. I. Khoirullah, “Pengaruh Variasi Ketebalan Isolator Terhadap Laju Kalor dan Penurunan Temperatur pada Permukaan Dinding Tungku Biomassa,” Semin. Nas. Mesin dan Ind., pp. 208–214, 2014.

Google Scholar

B. J. Knurr & J. F. Hauri, “An Alternative to Recycling: Measurement of Combustion Enthalpies of Plastics via Bomb Calorimetry,” J. Chem. Educ., Apr. 2020.

DOI:10.1021/acs.jchemed.0c00076

M. Paristiowati, Z. Zulmanelis, & M. F. Nurhadi, “Green Chemistry-Based Experiments As the Implementation of Sustainable Development Values,” J. Tadris Kim., vol. 4, no. 1, pp. 11–20, 2019.

DOI:10.15575/jtk.v4i1.3566

C. E. Bennett, W. Virginia, & R. J. Sweeney, “Calorimetry Experiment for General Chemistry,” J. Chem. Educ., vol. 87, no. 11, pp. 10–12, 2010.

DOI:10.1021/ed100036y

R. Chang, Kimia Dasar Konsep-Konsep Inti, 3rd ed. Jakarta: Penerbit Erlangga, 2005.

Google Scholar

R. E. Barlag, P. Arthasery, & F. Nyasulu, “Electrical determination of the heat capacity of a calorimeter in approximately one minute,” J. Chem. Educ., vol. 87, no. 9, p. 992, 2010.

DOI:10.1021/ed100318u

M. S. Silberberg, Principles of General Chemistry, 3rd ed. New York: Mc Graw Hill, 2013.

Google Scholar

E. B. Ettah, J. G. Egbe, S. A. Takim, U. P. Akpan, & E. B. Oyom, “Investigation of the Thermal Conductivity of Polyvinyl Chloride (Pvc) Ceiling Material Produced In Epz Calabar , For Application Tropical Climate Zones,” J. Polym. Text. Eng., vol. 3, no. 2, pp. 34–38, 2016.

Google Scholar

Y. Kuang, G. Chen, & Z. Fang, “A Facile Approach to Evaluate Thermal Insulation Performance of Paper Cups,” Int. J. Polym. Sci., vol. 2015, p. 367962, 2015.

DOI:10.1155/2015/367962

N. Z. Jusoh, A. M. Zakaria, M. Ahmad, & A. Ibrahim, “Thermal conductivity of Akar bamboo (Dendracalamus pendulus) and Semantan bamboo (Gigantochloa scortechinii),” Adv. Mater. Res., vol. 748, pp. 160–164, 2013.

Google Scholar

J. J. Stankus & J. D. Caraway, “Replace-ment of coffee cup calorimeters with fabricated beaker calorimeters,” J. Chem. Educ., vol. 88, no. 12, pp. 1730–1731, 2011.

DOI:10.4028/www.scientific.net/AMR.748.160

D. T. Miles & A. C. Borchardt, “Laboratory Development and Lecture Renovation for a Science of Food and Cooking Course,” J. Chem. Educ., vol. 91, no. 10, pp. 1637–1642, Oct. 2014.

DOI:10.1021/ed5003256

I. Farida, R. R. Zahra, and F. S. Irwansyah, “Experiment Optimization On The Reaction Rate Determination And Its Implementation In Chemistry Learning To Develop Science Process Skills,” J. Pendidik. Sains Indones. (Indonesian J. Sci. Educ., vol. 8, no. 1, pp. 67–77, 2020.

DOI:10.24815/jpsi.v8i1.15608

I. Farida, R. Kheiriah, S. Sari, & F. S. Irwansyah, “Application of the principle of hydraulic cranes on the conductivity tester,” in Journal of Physics: Conference Series, 2019, vol. 1402, no. 5, p. 55072.

DOI:10.1088/1742-6596/1402/5/055072

T. Lindstrom & C. Middlecamp, “Campus as a Living Laboratory for Sustainability: The Chemistry Connection,” J. Chem. Educ., vol. 94, no. 8, pp. 1036–1042, Aug. 2017.

DOI:10.1021/acs.jchemed.6b00624

Refbacks

  • There are currently no refbacks.