Influence Comparison of Precursors on LiFePO4/C Cathode Structure for Lithium Ion Batteries

Luthfi Mufidatul Hasanah, Cornelius Satria Yudha, Soraya Ulfa Muzayanha, Diajeng Putri Suciutami, Atika Aulia Novita Sari, Inayati Inayati, Agus Purwanto

Abstract

Electricity is the most energy demanded in this era. Energy storage devices must be able to store long-term and portable. A lithium ion battery is a type of battery that has been occupied in a secondary battery market. Lithium iron phosphate / LiFePO4 is a type of cathode material in ion lithium batteries that is very well known for its environmental friendliness and low prices. LiFePO4/C powder can be obtained from the solid state method. In this study the variables used were the types of precursors : iron sulfate (FeSO4), iron oxalate (FeC2O4) and FeSO4+charcoal. Synthesis of LiFePO4/C powder using Li:Fe:P at 1:1:1 %mol. Based on the XRD results, LiFePO4/C from FeSO4+charcoal shows the LiFePO4/C peaks according to the JCPDS Card with slight impurities when compared to other precursors. XRD results of LiFePO4/C with precursors of FeSO4 or FeC2O4 shows more impurities peaks. This LiFePO4/C cathode is paired with lithium metal anode, activated by a separator, LiPF6 as electrolyte. Then this arrangement is assembled become a coin cell battery. Based on the electrochemical results, Initial discharge capacity of LiFePO4/C from the FeSO4 precursor is 19.72 mAh/g, while LiFePO4/C with the FeC2O4 precursor can obtain initial discharge capacity of 17.99 mAh/g, and LiFePO4/C with FeSO4+charcoal exhibit initial discharge capacity of 21.36 mAh/g. This means that the presence of charcoal helps glucose and nitrogen gas as reducing agents.

Keywords

lithium ion battery; lithium iron phosphate; cathode; solid state; iron sulfate; iron oxalate; charcoal

Full Text:

PDF

References

L. Z. F. Yu, S. Ge, B. Li, G. Sun, & R. Mei, “Three-Dimensional Porous LiFePO4: Design, Architectures and High Performance for Lithium Ion Batteries,” Current Inorganic Chemistry., vol. 2, no. 2, 2010.

DOI: 10.2174/1877944111202020194

J. B. Goodenough, “Electrochemical energy storage in a sustainable modern society," Energy Environ. Sci., vol. 7, pp. 14-18, 2014.

DOI: 10.1039/C3EE42613K

R. Zhang, Y. Zhang, K. Zhu, F. D. Q. Fu, X. Yang, Y. Wang, X. Bie, G, Chen, & Y. Wei,“Carbon and RuO2 Binary Surface Coating for the Li3V2(PO4)3 Cathode Material for Lithium-Ion Batteries.,” ACS Appl. Mater. Interfaces, vol. 6, no. 15, pp. 12523–30, 2014,

DOI: 10.1021/am502387z.

M. Park, X. Zhang, M. Chung, G. B. Less, & A. M. Sastry, “A review of conduction phenomena in Li-ion batteries,” J. Power Sources, vol. 195, no. 24, pp. 7904–7929, 2010,

DOI: 10.1016/j.jpowsour.2010.06.060.

C. S. Yudha, L. M. Hasanah, S. U. Muzayanha, H. Widiyandari, & A. Purwanto, “ Synthesis and Characterization of Material LiNi0.8Co0.15Al0.05O2 Using One-Step Co-Precipitation Method for Li-Ion Batteries,” JKPK (Jurnal Kimia dan Pendidik. Kimia). vol. 4, no. 3, pp. 134–144, 2019.

DOI: 10.20961/jkpk.v4i3.29850.

S. U. Muzayanha, C. S. Yudha, L. M. Hasanah, A. Nur, & A. Purwanto, “Effect of Heating on the Pretreatment Process for Recycling Li-Ion Battery Cathode,” JKPK (Jurnal Kimia dan Pendidik. Kimia), vol. 4, no. 2, pp. 105-114, 2019,

DOI: 10.20961/jkpk.v4i2.29906.

B. Stiaszny, J. C. Ziegler, E. E. Krauß, M. Zhang, J. P. Schmidt, & E. Ivers-Tiffée, “Electrochemical characterization and post-mortem analysis of aged LiMn 2O4-NMC/graphite lithium ion batteries part II: Calendar aging,” J. Power Sources, vol. 258, pp. 61–75, 2014.

DOI: 10.1016/j.jpowsour.2014.02.019

A. K. Padhi, K. S. Nanjundaswamy, & J. B. Goodenough, “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries,” J. Electrochem. Soc., vol. 144, no. 4, pp. 1188–1194, 1997.

DOI: 10.1684/agr.2014.0700

L. X Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang & J. B. Goodenough, “Development and challenges of LiFePO 4 cathode material for lithium-ion batteries,” Energy Environ. Sci., vol. 4, no. 2, pp. 269–284, 2011.

DOI: 10.1039/C0EE00029A

J. Molenda, A. Kulka, A. Milewska, W. Zajac, & K. Świerczek, “Structural, transport and electrochemical properties of liFePO4 substituted in lithium and iron sublattices (Al, Zr, W, Mn, Co and Ni),” Materials (Basel)., vol. 6, no. 5, pp. 1656–1687, 2013.

DOI: 10.3390/ma6051656

G. García, S. Dieckhöfer, W. Schuhmann, & E. Ventosa, “Exceeding 6500 cycles for LiFePO4/Li metal batteries through understanding pulsed charging protocols,” J. Mater. Chem. A, vol. 6, no. 11, pp. 4746–4751, 2018,

DOI: 10.1039/c8ta00962g

C. Gong, Z. Xue, S. Wen, Y. Ye, & X. Xie, “Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries,” J. Power Sources, vol. 318, pp. 93–112, 2016,

DOI: 10.1016/j.jpowsour.2016.04.008

Y. Liu, M. Zhang, Y. L. Y. Hu, M. Y. Zhu, H. M. Jin, & W. Li, “Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery,” Electrochim. Acta, vol. 176, pp. 689–693, 2015.

DOI: 10.1016/j.electacta.2015.07.064

M. Sivakumar, R. Muruganantham, & R. Subadevi, “Synthesis of surface modified LiFePO4 cathode material via polyol technique for high rate lithium secondary battery,” Appl. Surf. Sci., vol. 337, pp. 234–240, 2015.

DOI: 10.1016/j.apsusc.2015.02.100

D. Xu, P. Wang, & B. Shen, “Synthesis and characterization of sulfur-doped carbon decorated LiFePO4 nanocomposite as high performance cathode material for lithium-ion batteries,” Ceram. Int., vol. 42, no. 4, pp. 5331–5338, 2016,

DOI: 10.1016/j.ceramint.2015.12.064

M. Ohring, “Engineering Materials Science.” 1995.

Google Schoolar

Y. Wang, Z. S. Feng, J. J. Chen, & C. Zhang, “Synthesis and electrochemical performance of LiFePO4/graphene composites by solid-state reaction,” Mater. Lett., vol. 71, pp. 54–56, 2012.

DOI: 10.1016/j.matlet.2011.12.034

Z. F. Zhang, Z. J. Wu, S. H. Su, Z. F. Gao, L. S. Li, & X. R. Wu, “Sustainable preparation of Li(FeM)PO4/C from converter sludge and its electrochemical performance as a cathode material for lithium ion batteries,” J. Alloys Compd., vol. 574, pp. 136–141.

DOI: 10.1016/j.jallcom.2013.04.015

L. Bin Kong, P. Zhang, M. C. Liu, H. Liu, Y. C. Luo, & L. Kang, “Fabrication of promising LiFePO 4/C composite with a core-shell structure by a moderate in situ carbothermal reduction method,” Electrochim. Acta, vol. 70, pp. 19–24, 2012.

DOI: 10.1016/j.electacta.2012.02.102

N. V Kosova, “Mechanochemical reactions and processing of nanostructured electrode materials for lithium-ion batteries,” vol. 3, no. Conference 2015, pp. 391–395, 2016.

DOI: 10.1016/j.matpr.2016.01.025

D. Zhou, X. Qiu, F. Liang, S. Cao, Y. Yao, & X. Huang, “Comparison of the e ff ects of FePO 4 and FePO 4 · 2H 2 O as precursors on the electrochemical performances of LiFePO 4 / C,” vol. 43, no. July, pp. 13254–13263, 2017.

DOI: 10.1016/j.ceramint.2017.07.023

J. Mun, H. Ha, & W. Choi, “Nano LiFePO 4 in reduced graphene oxide framework for ef fi cient high- rate lithium storage,” J. Power Sources, vol. 251, pp. 386–392, 2014.

DOI: 10.1016/j.jpowsour.2013.11.034

G. Xie, H. J. Zhu, X. M. Liu, & H. Yang, “A core-shell LiFePO4/C nanocomposite prepared via a sol-gel method assisted by citric acid,” J. Alloys Compd., vol. 574, pp. 155–160, 2013.

DOI: 10.1016/j.jallcom.2013.03.281

Y. Wang, B. Zhu, Y. Wang, & F. Wang, “Solvothermal synthesis of LiFePO4 nanorods as high-performance cathode materials for lithium ion batteries,” Ceram. Int., vol. 42, no. 8, pp. 10297–10303, 2016.

DOI: 10.1016/j.ceramint.2016.03.165

D. Jugović, M. Mitrić, M. Kuzmanović, N. Cvjetićanin, S. Marković, S. Škapin, & D. Uskokovića, “Rapid crystallization of LiFePO 4 particles by facile emulsion-mediated solvothermal synthesis,” Powder Technol., vol. 219, pp. 128–134, 2012,

DOI: 10.1016/j.powtec.2011.12.028

C. Zhang, Y. Liang, L. Yao, & Y. Qiu, “Effect of thermal treatment on the properties of electrospun LiFePO 4 – carbon nanofiber composite cathode materials for lithium-ion batteries,” J. Alloys Compd., vol. 627, pp. 91–100, 2015.

DOI: 10.1016/j.jallcom.2014.12.067

C. Zhu, Y. Yu, L. Gu, K. Weichert,& J. Maier, “Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires,” Angew. Chemie - Int. Ed., vol. 50, no. 28, pp. 6278–6282, 2011.

DOI: 10.1002/anie.201005428

X. R. Zeng, F. Deng, & J. Z. Zou, “Effect of temperature on the structure and electrochemical performance of LiFePO4-based composite prepared by microwave chemical vapor deposition,” J. Alloys Compd., vol. 517, pp. 176–181, 2012.

DOI: 10.1016/j.jallcom.2011.12.073

A. Naik, J. Zhou, C. Gao, & L. Wang, “Microwave synthesis of LiFePO4 from iron carbonyl complex,” Electrochim. Acta, vol. 142, pp. 215–222, 2014.

DOI: 10.1016/j.electacta.2014.07.118

Z. Huang, P. Luo, & D. Wang, “Preparation and characterization of core-shell structured LiFePO 4 / C composite using a novel carbon source for lithium-ion battery cathode,” J. Phys. Chem. Solids, vol. 102, no. September 2016, pp. 115–120, 2017.

DOI: 10.1016/j.jpcs.2016.11.011

M. Kuzmanovi, D. Jugovi, M. Mitri, B. Joki, & N. Cvjeti, “The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO 4 / C composite,” vol. 41, pp. 6753–6758, 2015.

DOI: 10.1016/j.ceramint.2015.01.121

E. Zhecheva, M. Mladenov, P. Zlatilova, V. Koleva, & R. Stoyanova, “Particle size distribution and electrochemical properties of LiFePO4 prepared by a freeze-drying method,” J. Phys. Chem. Solids, vol. 71, no. 5, pp. 848–853, 2010.

DOI: 10.1016/j.jpcs.2010.02.012

N. A. Hamid, S. Wennig, S. Hardt, A. Heinzel, C. Schulz, & H. Wiggers, “High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO 4 synthesized by highly-flexible and scalable flame spray pyrolysis,” J. Power Sources, vol. 216, pp. 76–83, 2012.

DOI: 10.1016/j.jpowsour.2012.05.047

L. Ni, J. Zheng, C. Qin, Y. Lu, P. Liu, T. Wu, Y. Tang, & Y. Chen, “Fabrication and characteristics of spherical hierarchical LiFePO4/C cathode material by a facile method,” Electrochim. Acta, vol. 147, pp. 330–336, 2014.

DOI: 10.1016/j.electacta.2014.09.028

S. Fujieda, K. Shinoda, & S. Suzuki, “Improvement of electrochemical properties of LiFePO4 fine particles synthesized in ethylene glycol solution resulting from heat treatment,” Solid State Ionics, vol. 262, pp. 613–616, 2014.

DOI: 10.1016/j.ssi.2013.11.008

K. A. Parmar, S. Prajapati, R. Patel, & Y. Dabhi, “Effective use of ferrous sulfate and alum as a coagulant in treatment of dairy industry wastewater,” J. Eng. Appl. Sci., vol. 6, no. 9, pp. 42–45, 2011.

Google Schoolar

Y. Zhu, S. Tang, H. Shi, & H. Hu, “Synthesis of FePO 4 Á x H 2 O for fabricating submicrometer structured LiFePO 4 / C by a co-precipitation method,”Ceramics International, vol. 40, no. 2, pp. 2685–2690, 2014.

DOI: 10.1016/j.ceramint.2013.10.055

X. Ma, G. Chen, Q. Liu, G. Zeng, & T. Wu, “Synthesis of LiFePO 4 / Graphene Nanocomposite and Its Electrochemical Properties as Cathode Material for Li-Ion Batteries,” journal of nanomaterials, vol. 2015, pp 1-6, 2015.

DOI: 10.1155/2015/301731

R. L. J. Chen, Z. Li, Q. Ding, X. An, Y. Pan, Z. Z. Fu, M. Yang, & Dongju, “Preparation of LiFePO4/C Cathode Materials via a Green Synthesis Route for Lithium-Ion Battery Applications,” pp. 1–13, 2018.

DOI: 10.3390/ma11112251

E. Suryono, Fabrikasi Lithium Iron Phosphate Carbon Sebagai Material Katoda Baterai Lithium Ion.Surakarta: UNS Press 2015.

Google Schoolar

Refbacks

  • There are currently no refbacks.