The Effect of Calcination Temperature on Cobalt Oxide Species and Performance for Catalytic Ozonation of NH4+ in Water

Lina Mahardiani

Abstract

Cobalt oxide catalysts can be prepared by impregnation and calcined under different temperature to obtained different species of cobalt oxide, namely CoO(OH), Co3O4, and CoO. Co3O4 was the most appropriate catalyst for decomposing NH4+ with O3 in the presence of Cl because of relatively high activity, 74%, and high selectivity for gas products, 88%, compared to CoO and CoO(OH). Cl is necessary to proceed the catalytic ozonation of NH4+ since Cl participate in the catalytic ozonation mechanism, while SO42– inhibited the process. During the catalytic ozonation of NH4+, Co3O4 showed no deactivation rather than enhanced the catalytic performance after repeated used up to 100% of NH4+ conversion. The Co3O4 can be regenerated by recalcining the catalyst under air at high temperature.

Keywords

Cobalt oxide species; Co3O4; catalytic ozonation NH4+; stability; regeneration

Full Text:

PDF

References

D. Pimentel, B. Berger, D. Filiberto, M. Newton, B. Wolfe, E. Karabinakis, S. Clark, E. Poon, E. Abbett, & S. Nandagopal, “Water Resources: Agricultural and Environmental Issues,” Bioscience, vol. 54, no. 10, pp. 909-918, 2004.

B. W. Mercer, L. L. Ames, C. J. Touhill, W. J. Van Slyke & R. B. Dean, “Ammonia Removal from Secondary Effluents by Selective Ion Exchange,” Water Pollut. Control Fed., vol.42, no. 2, pp. R95-R107, 1970.

R. V. Thurston, R. C. Russo, & G. A. Vinogradov, “Ammonia toxicity to fishes. Effect of pH on the toxicity of the un-ionized ammonia species,” Environmental Science and Technology, vol. 15, no. 7, pp. 837-840, 198.

K. W. Kim, Y. J. Kim, I. T. Kim, G. I. Park, & E. H. Lee, “The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode”. Electro-chim. Acta, vol. 50, pp. 4356-4364, 2005.

M. Klare, J. Scheen, K. Vogelsang, H. Jacobs, & J. A. C. Broekaert, “Degrada-tion of short-chain alkyl- and alkanol-amines by TiO2- and Pt/TiO2-assisted photocatalysis,” Chemosphere, vol. 41, no. 3, pp. 353–362, 2000.

B. Legube & N. K. V. Leitner, “Catalytic ozonation: a promising advanced oxidation technology for water treatment,” Catal. Today, vol. 53, no. 1, pp. 61–72, 1999.

B. Kasprzyk-Hordern, M. Ziolek, & J. Nawrocki, “Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment,” Appl. Catal. B: Environ. vol. 46, no. 3, pp. 639-669, 2003.

Y. Guo, L. Yang, X. Cheng, & X. Wang, “The Application and Reaction Mechanism of Catalytic Ozonation in Water Treatment,” J Environ Anal Toxicol, vol. 2, no. 7, pp. 150-155, 2012.

P. C. C. Faria, D. C. M. Monteiro, J. J. M. Orfao, & M. F. R. Pereira, “Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds,” Chemosphere, vol. 74, no. 6, pp. 818-824, 2009.

A. Ikhlaq, D. R. Brown, & B. Kasprzyk-Hordern, “Mechanisms of catalytic ozonation on alumina and zeolites in water: Formation of hydroxyl radicals,” Appl. Catal. B: Environ., vol. 123-124 pp. 94-106, 2012.

P. M. Alvarez, F. J. Beltran, J. P. Pocostales, & F. J. Mas, “Preparation and structural characterization of Co/Al2O3 catalysts for the ozonation of pyruvic acid,” Appl. Catal. B: Environ., vol. 72, pp. 322-330, 2007.

E. Wilczkowska, K. Krawczyk, J. Petryk, J. W. Sobczak, & Z. Kaszkur, ”Direct nitrous oxide decomposition with a cobalt oxide catalyst,” Appl. Catal. A: Gen., vol. 389, pp. 165-172, 2010.

S. Ichikawa, L. Mahardiani, & Y. Kamiya, “Catalytic oxidation of ammonium ion in water with ozone over metal oxide catalysts,” Catal. Today, vol. 232 , pp. 192-197, 2014.

C. Liu, Y. Chen, L. Guo, & C. Li, “Fabrication of Surfactant-Enhanced Metal Oxides Catalyst for Catalytic Ozonation Ammonia in Water,” Int. J. Environ. Res. Publich Health, vol. 15, no. 8, pp. 1654-1668, 2018.

S. Mo, Q. Zhang, Y. Sun, M. Zhang, J. Li, Q. Ren, M. Fu, J. Wu, L. Chen, & D. Ye, “Gaseous CO and toluene co-oxidation over monolithic core–shell Co3O4- based hetero- structured catalysts,” J. Mater. Chem. A, vol. 7, no. 27, pp. 16197-16210, 2019.

T. Nishi, Y. Hayasaka, T. M. Suzuki, S. Sato, N. Isomura, N. Takahashi, S. Kosaka, T. Nakamura, S. Sato, T. Morikawa, “Electrochemical Water Oxidation Catalysed by CoO‐Co2O3‐Co(OH)2 Multiphase‐ Nanoparticles Prepared by Femtosecond Laser Ablation in Water,” ChemistrySelect, vol. 3, no. 17, pp. 4979-4984, 2018.

F. Reikowski, F. Maroun, I. Pacheco, T. Wiegmann, P. Allongue, J. Stettner, O. M. Magnussen, “Operando Surface X-ray Diffraction Studies of Structurally Defined Co3O4 and CoOOH Thin Films during Oxygen Evolution,” ACS Catal., vol. 9, no. 5, pp. 3811-3821, 2019.

P. Hu & M. Long, “Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications,” Appl. Catal. B: Environ., vol. 181, pp. 103-117, 2016.

R. Ashraf, M. Bashir, M. A. Raza, S. Riaz, & S. Naseem, “Effect of Calcination on Structural And Magnetic Properties of Co Doped Zno Nano-structur conference,” Paper: Intermag 2015-IEEE International Magnetics Conference, 2015.

C. W. Tang, C. B. Wang & S. H. Chien, “Characterization of Cobalt Oxides Studied by FT-IR, Raman, TPR and TG-MS,” Thermochimica Acta, vol. 473, pp. 68-73, 2008.

J. Yang & T. Sasaki, “Synthesis of CoOOH Hierarchically Hollow Spheres by Nanorod Self-Assembly through Bubble Templating,” Chem. Mater. vol. 20, no. 5, pp. 2049-2056, 2008.

H-K. Lin, H-C. Chiu, H-C. Tsai, S-H. Chien, C-B. Wang, “Synthesis, Charac-terization and Catalytic Oxidation of Carbon Monoxide over Cobalt Oxide,” Catalysis Letter, vol. 88, pp. 169-174, 2003.

J. Yang, H. Liu, W. N. Martens, & R. L. Frost, “Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhy-droxide, and Cobalt Oxide Nanodiscs,” J. Phys. Chem. C, vol. 114, no. 1, pp. 111-119, 2010.

X. Chen, J. P. Cheng, Q. L. Shou, F. Liu, X. B. Zhang, “Effect of calcination temperature on the porous structure of cobalt oxide micro-flowers,” CrystEng-Comm., vol. 14, no. 4, pp. 1271-1276, 2012.

S. L. Sharifi, H. R. Shakur, A. Mirzaei, A. Salmani, & M. H. Hosseini, “Characterization of Cobalt Oxide Co3O4 Nanoparticles Prepared by Various Methods: Effect of Calcination Temperatures on Size, Dimension and Catalytic Decomposition of Hydrogen Peroxide,” Int. J. Nanosci. Nanotechnol., vol. 9, no. 1, pp. 51-58, 2013.

H. Becker, T. Turek, & R. Guttel, “Study of temperature-programmed calcination of cobalt-based catalysts under NO-containing atmosphere,” Catal. Today, vol. 215, pp. 8-12, 2013.

Z. P. Xu & H. C. Zeng, “Thermal evolution of cobalt hydroxides: a comparative study of their various structural phases,” J. Mater. Chem. vol. 8, no. 11, pp. 2499-2506, 1998.

M. Gruttadauria, L. F. Liotta, G. Di Carlo, G. Pantaleo, G. Deganello, P. L. Meo, C. Aprile, & R. Noto, “Oxidative degradation properties of Co-based catalysts in the presence of ozone,” Appl. Catal. B: Environ. vol. 75, pp. 281-289, 2007.

L. Mahardiani & Y. Kamiya, “Enhancement of Catalytic Activity of Cobalt Oxide for Catalytic Ozonation of Ammonium Ion in Water with Repeated Use,” J. Jpn. Petrol. Inst., vol. 59, no. 1, pp.31-34, 2016.

J. A. Moulijn, A. E. van Diepen, & F. Kapteijn, “Catalyst deactivation: is it predictable?: What to do?,” Appl. Catal. A: Gen. vol. 212, pp. 3-16, 2001.

D. L. Trimm, “The regeneration or disposal of deactivated heterogeneous catalysts,” Appl. Catal. A: Gen., vol. 212, pp. 153-160, 2001.

Refbacks

  • There are currently no refbacks.