Effect of Glycerol Modification on Mn-Doped ZnO–Chitosan Membranes for Tartrazine Photodegradation

Nur Faridatus Soimah, Khabibi Khabibi, Retno Ariadi Lusiana

Abstract

This study evaluates the photocatalytic performance and charge transfer behavior of Mn-doped ZnO chitosan membranes, both with and without glycerol, for the degradation of tartrazine under visible light. The membranes were prepared by homogeneous mixing using chitosan as the polymer matrix, ZnO as the photocatalyst, Mn2+ as the dopant, and glycerol as a plasticizer. Membrane morphology and elemental distribution were examined using SEM and EDX, and supported by physical tests. Glycerol increased membrane flexibility and mechanical strength, but reduced porosity and surface hydrophilicity, indicating a denser polymer network and water accessibility. Photocatalytic activity was quantified from UV Vis monitoring of tartrazine and fitted to pseudo-first-order kinetics. The glycerol-containing membrane showed a higher rate constant (k = 0.4398 h−1) than the membrane without glycerol (k = 0.0893 h−1). The performance improvement is attributed to better catalyst retention and dispersion in the matrix, which supports photon utilization and charge separation. Mechanistic interpretation suggests that Mn2+ acts as an electron trap, thereby suppressing electron-hole recombination and promoting the formation of reactive species. At the same time, glycerol can suppress the generation of hydroxyl and superoxide radicals by limiting contact among tartrazine, water, and photocatalytically active sites. Overall, the results reveal a trade-off between transport properties and catalytic efficiency, identifying glycerol content as a key parameter for optimizing Mn-doped ZnO chitosan membranes for dye wastewater treatment.

Keywords

chitosan membrane;ZnO–doping Mn; glycerol; tartrazine photodegradation; charge transfer

Full Text:

PDF

References

[1] D. A. Widyasari and K. Khasanah, “Analisis Tartrazin dalam Minuman Kemasan di Pasar Bandar, Batang secara Spektrofotometri UV-Vis,” J. Pharm., vol. 1, no. 1, pp. 9–20, 2023, doi: 10.30989/jop.v1i1.918.

[2] DS Rejeki, O Pramiastuti, SS Pramesti, and Muti Aryanti, “Analisis Kadar Zat Warna Tartrazin pada Makanan dan Minuman dengan Metode Spektrofotometri UV-Vis,” J. Med. Nusant., vol. 2, no. 4, pp. 01–13, 2024, doi: 10.59680/medika.v2i4.1429.

[3] D. H. Micheletti et al., “A review of adsorbents for removal of yellow tartrazine dye from water and wastewater,” Bioresour. Technol. Reports, vol. 24, no. August, 2023, doi: 10.1016/j.biteb.2023.101598.

[4] H. Alkhaldi et al., “RSC Advances Sustainable polymeric adsorbents for adsorption- based water remediation and pathogen,” RSC Adv., vol. 14, pp. 33143–33190, 2024, doi: 10.1039/D4RA05269B.

[5] R. Al-tohamy et al., “Ecotoxicology and Environmental Safety A critical review on the treatment of dye-containing wastewater : Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,” Ecotoxicol. Environ. Saf., vol. 231, p. 113160, 2022, doi: 10.1016/j.ecoenv.2021.113160.

[6] P. Amchova, F. Siska, and J. Ruda-Kucerova, “Safety of tartrazine in the food industry and potential protective factors,” Heliyon, vol. 10, no. 18, p. e38111, 2024, doi: 10.1016/j.heliyon.2024.e38111.

[7] K. Sivaranjani, S. Sivakumar, and J. Dharmaraja, “Enhancement Photocatalytic Activity of Mn Doped Cds/Zno Nanocomposites for the Degradation of Methylene Blue Under Solar Light Irradiation,” Adv. Mater. Sci., vol. 22, no. 2, pp. 28–48, 2022, doi: 10.2478/adms-2022-0006.

[8] G. K. Weldegebrieal, “Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review,” Inorg. Chem. Commun., vol. 120, no. June, p. 108140, 2020, doi: 10.1016/j.inoche.2020.108140.

[9] I. M. Tsani, “Review Nanopartikel ZnO : Metode Sintesis Nanopartikel dan Aplikasi dalam Dunia Kesehatan,” 2021. [Online]. Available: https://www.researchgate.net/publication/351990932%0AReview

[10] R. T. Hussain, M. S. Hossain, and J. H. Shariffuddin, “Green synthesis and photocatalytic insights: A review of zinc oxide nanoparticles in wastewater treatment,” Mater. Today Sustain., vol. 26, no. January, p. 100764, 2024, doi: 10.1016/j.mtsust.2024.100764.

[11] N. B. Kudaer, E. Yousif, M. H. Risan, and M. Khadom, “Preparation of ZnO Nanoparticles by the Chemical Precipitation Method,” J. Serambi Eng., vol. 7, no. 2, pp. 3129–3134, 2022, [Online]. Available: https://ojs.serambimekkah.ac.id/jse/article/view/4124

[12] P. Kadam, K. Gadave, S. Jadkar, V. Kadam, and C. Jagtap, “C: ZnO Composites for Improving Catalytic Activity of ZnO,” ES Energy Environ., vol. 21, pp. 1–11, 2023, doi: 10.30919/esee946.

[13] M. A. Abu-Dalo, S. A. Al-Rosan, and B. A. Albiss, “Photocatalytic degradation of methylene blue using polymeric membranes based on cellulose acetate impregnated with zno nanostructures,” Polymers (Basel)., vol. 13, no. 19, 2021, doi: 10.3390/polym13193451.

[14] Y. Chi et al., “Evaluation of practical application potential of a photocatalyst: Ultimate apparent photocatalytic activity,” Chemosphere, vol. 285, p. 131323, 2021, doi: 10.1016/j.chemosphere.2021.131323.

[15] V. Kumaravel et al., “Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants,” Chem. Eng. J., vol. 416, no. December 2020, p. 129071, 2021, doi: 10.1016/j.cej.2021.129071.

[16] M. H. Aleinawi, A. U. Ammar, M. Buldu-Akturk, N. S. Turhan, S. Nadupalli, and E. Erdem, “Spectroscopic Probing Of Mn-Doped ZnO Nanowires Synthesized via a Microwave-Assisted Route,” J. Phys. Chem. C, vol. 126, no. 8, pp. 4229–4240, 2022, doi: 10.1021/acs.jpcc.2c00009.

[17] R. Akram, A. Fatima, Z. M. Almohaimeed, Z. Farooq, K. W. Qadir, and Q. Zafar, “Photocatalytic Degradation of Methyl Green Dye Mediated by Pure and Mn-Doped Zinc Oxide Nanoparticles under Solar Light Irradiation,” Adsorpt. Sci. Technol., pp. 1–15, 2023, doi: 10.1155/2023/5069872.

[18] M. Ishfaq et al., “The in situ synthesis of sunlight-driven Chitosan/MnO2@MOF-801 nanocomposites for photocatalytic reduction of Rhodamine-B,” J. Mol. Struct., vol. 1301, no. November 2023, p. 137384, 2024, doi: 10.1016/j.molstruc.2023.137384.

[19] P. Sen et al., “Advancements in Doping Strategies for Enhanced Photocatalysts and Adsorbents in Environmental Remediation,” Technologies, vol. 11, no. 5, pp. 1–31, 2023, doi: 10.3390/technologies11050144.

[20] S. Sethi, Medha, and S. Thakur, “Synthesis and characterization of nanocomposite chitosan-gelatin hydrogel loaded with ZnO and its application in photocatalytic dye degradation,” Mater. Today Proc., vol. 78, pp. 815–824, 2023, doi: 10.1016/j.matpr.2022.11.277.

[21] J. Kerwald, C. F. de Moura Junior, E. D. Freitas, J. de D. P. de Moraes Segundo, R. S. Vieira, and M. M. Beppu, Cellulose-based electrospun nanofibers: a review, vol. 29, no. 1. 2022. doi: 10.1007/s10570-021-04303-w.

[22] S. Acharya, S. Liyanage, N. Abidi, P. Parajuli, S. S. Rumi, and J. L. Shamshina, “Utilization of cellulose to its full potential: A review on cellulose dissolution, regeneration, and applications,” Polymers (Basel)., vol. 13, no. 24, 2021, doi: 10.3390/polym13244344.

[23] S. D. and P. D. P. Galina Satchanska, “Natural and Synthetic Polymers for Biomedical and Environmental Applications Galina,” Polymers (Basel)., vol. 16, no. 1159, pp. 591–641, 2024, doi: 10.3390/polym16081159 Academic.

[24] S. A. Elsayed, I. E. T. El-Sayed, and M. A. Tony, “Impregnated chitin biopolymer with magnetic nanoparticles to immobilize dye from aqueous media as a simple, rapid and efficient composite photocatalyst,” Appl. Water Sci., vol. 12, no. 11, pp. 1–16, 2022, doi: 10.1007/s13201-022-01776-3.

[25] F. R. Pramastuti, E. Supriyantini, R. Pramesti, S. Sedjati, and A. Ridlo, “Kitosan sebagai Bioadsorben Logam Besi (Fe) pada Jaringan Lunak Kerang Hijau (Perna viridis),” Bul. Oseanografi Mar., vol. 13, no. 1, pp. 63–69, 2024, doi: 10.14710/buloma.v13i1.41095.

[26] V. Virrisya and A. Astuti, “Karakterisasi Sifat Optik Nanopartikel ZnO didoping Mn Menggunakan Metode Sol-Gel,” J. Fis. Unand, vol. 8, no. 4, pp. 308–314, 2019, doi: 10.25077/jfu.8.4.308-314.2019.

[27] S. R. Cengristitama, “Pengaruh Penambahan Plasticizer Gliserol Dan Kitosan Terhadap Karakteristik Plastik Biogradable Berbahan Dasar Pati Sukun,” TEDC, vol. 16, no. 2, pp. 102–108, 2022. https://ejournal.poltektedc.ac.id/index.php/tedc/article/view/579

[28] B. R. Widiatmono, A. A. Sulianto, and C. Debora, “Biodegradabilitas Bioplastik Berbahan Dasar Limbah Cair Tahu dengan Penguat Kitosan dan Plasticizer Gliserol,” J. Sumberd. Alam dan Lingkung., vol. 8, no. 1, pp. 21–27, 2021, doi: 10.21776/ub.jsal.2021.008.01.3.

[29] R. D Nyamiati, D. Timotius, S. S. Rahmawati, C. Carissavilla, and N. Amalia, “Pengaruh Kinerja Membran Kitosan-TiO2 Terhadap Degradasi Limbah Batik dengan Sistem Hybrid Fotokatalitik Effect of Chitosan-TiO2 Membrane Performance for the Degradation of Batik Waste with a Photocatalytic Hybrid System,” J. Ilm. Tek. Kim., vol. 21, no. 1, pp. 2460–8203, 2024, doi: https://doi.org/10.31315/e.v21i1.10734.

[30] J. Garcia et al., “Chitosan‑based glycerol‑plasticized membranes: bactericidal and fibroblast cellular growth properties,” Polym. Bull., vol. 78, no. 0123456789, pp. 4297–4312, 2020, doi: 10.1007/s00289-020-03310-4.

[31] Q. Duan, Y. Chen, L. Yu, and F. Xie, “Chitosan–Gelatin Films: Plasticizers/Nanofillers Affect Chain Interactions and Material Properties in Different Ways,” Polymers (Basel)., vol. 14, no. 18, pp. 1–17, 2022, doi: 10.3390/polym14183797.

[32] D. R. Smith, A. P. Escobar, M. N. Andris, B. M. Boardman, and G. M. Peters, “Understanding the Molecular-Level Interactions of Glucosamine-Glycerol Assemblies: A Model System for Chitosan Plasticization,” ACS Omega, vol. 6, no. 39, pp. 25227–25234, 2021, doi: 10.1021/acsomega.1c03016.

[33] N. T. T. Hoang, A. T. K. Tran, T. A. Le, and D. D. Nguyen, “Enhancing efficiency and photocatalytic activity of TiO2-SiO2 by combination of glycerol for MO degradation in continuous reactor under solar irradiation,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 105789, 2021, doi: 10.1016/j.jece.2021.105789.

[34] N. T. T. Hoang and D. D. Nguyen, “Improving the Degradation Kinetics of Industrial Dyes with Chitosan/TiO2/Glycerol Films for the Sustainable Recovery of Chitosan from Waste Streams,” Sustain., vol. 15, no. 8, 2023, doi: 10.3390/su15086979.

[35] A. T.-K. T. Nhung Thi-Tuyet Hoang and Ho, “Enhanced degradation of dyes in secondary textile wastewater: Continuous-flow photoreactors using TiO2/chitosan/glycerol under UVA irradiation,” Water Sci. Eng., vol. 18, no. 2, p. 107386, 2025, doi: 10.1016/j.wse.2025.08.001.

[36] N. T. T. Hoang, A. T. K. Tran, M. H. Hoang, T. T. H. Nguyen, and X. T. Bui, “Synergistic effect of TiO2 /chitosan/glycerol photocatalyst on color and COD removal from a dyeing and textile secondary effluent,” Environ. Technol. Innov., vol. 21, p. 101255, 2021, doi: 10.1016/j.eti.2020.101255.

[37] R. A. L. Tauhid Nur Ikhsan, Khabibi, “Sintesis Membran Kitosan Tertaut Silang Tripolifosfat dengan Paduan Polivinil Alkohol untuk Permeasi Kreatinin Tauhid,” Greensph. J. Environ. Chem., vol. 4, no. 1, pp. 25–31, 2024, doi: https://doi.org/10.14710/gjec.2024.21044.

[38] C. G. F. Retno Ariadi Lusiana, Ahmad Suseno, Khabibi, “Pengaruh Tripolifosfat sebagai Agen Taut Silang pada Membran Kitosan Terhadap Karakter Fisikokimia dan Kemampuan Permeasi,” Greensph. J. Environ. Chem., vol. 1, no. 1, pp. 19–24, 2021, doi: https://doi.org/10.14710/gjec.2021.10898.

[39] A. A. S. Alahl, H. A. Ezzeldin, A. A. Al-Kahtani, S. Pandey, and Y. H. Kotp, “Synthesis of a Novel Photocatalyst Based on Silicotitanate Nanoparticles for the Removal of Some Organic Matter from Polluted Water,” Catalysts, vol. 13, no. 6, 2023, doi: 10.3390/catal13060981.

[40] S. M. Sari, A. L. R., Sulaiman, D., Ulva, “Karakterisasi Membran Kitosan Kulit Udang-PVA dengan Variasi Karbon Aktif sebagai Filter Air,” J. Literasi Pendidik. Fis., vol. 5, no. 2, pp. 198–210, 2024, doi: https://doi.org/10.30872/jlpf.v5i2.4400.

[41] K. R. Winandri, A. P. Anjuda, and S. S. Santi, “Pengaruh Ketebalan Membran Terhadap Sifat-Sifat Membran ( Contact Angle , Porositas dan Selektivitas ),” J. Serambi Eng., vol. X, no. 1, pp. 11491–11498, 2025, [Online]. Available: https://jse.serambimekkah.id/index.php/jse/article/view/584

[42] N. Kaneva, “applied sciences The Effect of Heat Treatment on the Sol – Gel Preparation of TiO 2 / ZnO Catalysts and Their Testing in the Photodegradation of Tartrazine,” Appl. Sci., vol. 14, no. 9872, pp. 1–13, 2024, doi: https://doi.org/10.3390/ app14219872.

[43] E. Renouvelables, B. Ismail, and W. Tipaza, “Preparation And Characterization Of TiO2-Chitosan Composite Films And Application For Tartrazine Dye Degradation,” Cellul. Chem. Technol, vol. 9–10, no. 1101–1107, pp. 6–12, 2022.https://doi.org/10.35812/cellulosechemtechnol.2022.56.98

[44] A. M. P. Omkar V. Vani, “Solar ‐ Powered Remediation of Carcinogenic Chromium (VI) and Methylene Blue Using Ferromagnetic Ni12P5 and Porous Ni12P5‐rGO Nanostructures,” MetalMat, pp. 1–11, 2025, doi: 10.1002/metm.70010.

[45] A. Hachity-ortega et al., “E ect of glycerol on properties of chitosan / chlorhexidine membranes and antibacterial activity against Streptococcus mutans,” microbiology, pp. 1–14, 2024, doi: 10.3389/fmicb.2024.1430954.

[46] F. Z. Kocak, M. Yar, and I. U. Rehman, “Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance,” Int. J. Mol. Sci. Artic., vol. 23, no. 5370, pp. 1–17, 2022, https://doi.org/10.3390/ijms23105370

[47] S. Raha, “ZnO nanostructured materials and their potential applications: progress, challenges and perspectives,” Nanoscale Adv., vol. 4, no. 1868, pp. 1868–1925, 2022, doi: 10.1039/d1na00880c.

[48] U. Fathanah, M. Rahmah, S. Muchtar, M. Yusuf, and C. Meurah, “Sintesis , Karakterisasi dan Kinerja Membran Hidrofobik Menggunakan Polyvinyl Pyrrolidone ( PVP ) sebagai Aditif,” ALCHEMY J. Penelit. Kim., vol. 17, no. 2, pp. 140–150, 2021, doi: 10.20961/alchemy.17.2.48435.140-150.

[49] A. A. Refaee et al., “Cellulosic fabrics modified with polyphosphonium chitosan hydrazone-TiO2-Ag nanobiocomposites for multifunctional applications,” Int. J. Biol. Macromol., vol. 220, no. July, pp. 482–492, 2022, doi: 10.1016/j.ijbiomac.2022.08.104.

[50] B. Abebe, “A critical mini-review on doping and heterojunction formation in ZnO-based catalysts,” RSC Adv., vol. 14, no. 17338, pp. 17338–17349, 2024, doi: 10.1039/d4ra02568g.

[51] N. F. R. Tang, D. Tahir, and H. Heryanto, “Sintesis Komposit ZnO/Ca3(PO4)2 menggunakan metode Sol-gel sebagai Material Fotokatalis Limbah Cair Industri (Metilen Biru),” J. Fis. Flux J. Ilm. Fis. FMIPA Univ. Lambung Mangkurat, vol. 19, no. 1, p. 31, 2022, doi: 10.20527/flux.v19i1.11824.

[52] K. T. Rashid, H. M. Alayan, A. E. Mahdi, M. N. Al-baiati, and H. S. Majdi, “Novel Water-Soluble Poly(terephthalic-co-glycerol-g-fumaric acid ) Copolymer Nanoparticles Harnessed as Pore Formers for Polyethersulfone Membrane Modification :,” water, vol. 14, no. 1507, pp. 1–19, 2022, doi: https://doi.org/10.3390/w14091507.

[53] L. V. Quang and A. Vu, “Preparation of Au / ZnO / Fe 3 O 4 Composite for Degradation of Tartrazine under Visible Light,” vol. 18, no. 1, pp. 71–84, 2023, doi: 10.9767/bcrec.17061.

[54] I. Aadnan, O. Zegaoui, A. El Mragui, I. Daou, H. Moussout, and J. C. G. Esteves da Silva, “Structural, Optical and Photocatalytic Properties of Mn Doped ZnO Nanoparticles Used as Photocatalysts for Azo-Dye Degradation under Visible Light,” Catalysts, vol. 12, no. 11, 2022, doi: 10.3390/catal12111382.

Refbacks

  • There are currently no refbacks.