Characterization of Eco-Friendly Straw Based on Chitosan from Pupae Exuviae of Black Soldier Fly (Hermetia illucens)
Abstract
Utilizing materials with high natural degradation capabilities is viable for managing a sustainable environment. Chitosan derived from the exuvia of black soldier flies-BFS (Hermetia illucens) offers a potential alternative to chitosan sourced from crustaceans and food plants. It can be used to create straws and other chitosan-based products. The research aimed to analyze the characterization of chitosan from BSF exuvia as an environmentally friendly raw straw material. This study began by collecting BSF pupae exuviae, which was cleaned and dried for chitosan extraction. The test was carried out using various levels of chitosan, i.e., 0%, 0.5%, 1%, 1.5%, and 2%, with observation parameters on tensile strength and elongation, biodegradability, water absorption, and contact angle. The research was conducted with 5 repetitions per sample at each chitosan concentration level. The results showed that higher concentrations of chitosan led to increased tensile strength, ranging from 1.38 to 3.65 N mm-². The contact angle and hydrophobicity values varied between 69.87° and 103.66°, while the elongation at break values ranged from 4.5 to 285%. The 4 formulas on the biodegradability test showed no noticeable difference according to statistical analysis of variance (ANOVA test). Based on the formulation tested, a chitosan concentration of 2% (P4) is the best formulation as an ingredient in making eco-friendly straw.
Keywords
Full Text:
PDFReferences
Afif, M., Wijayati, N., & Mursiti, S. (2018). Pembuatan dan karakterisasi bioplastik dari pati biji alpukat-kitosan dengan plasticizer sorbitol. Indonesian Journal of Chemical Science, 7(2), 102–109. https://doi.org/10.15294/ijcs.v7i2.20914
Anggraini, L., Rosida, D. F., & Wicaksono, L. A. (2022). Kemampuan laju transmisi uap dan biodegradasi edible straw dari pati umbi (ganyong, garut, kimpul) dan gelatin ikan. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 10(3), 226–235. https://doi.org/10.21776/ub.jkptb.2022.010.03.06
A’yun, S. N., Triastuti, J., & Saputra, E. (2021). Edible straw formulation from caragenant and gelatin as a solution in reducing plastic waste. IOP Conference Series: Earth and Environmental Science, 718(1), 012007. https://doi.org/10.1088/1755-1315/718/1/012007
Barbi, S., Messori, M., Manfredini, T., Pini, M., & Montorsi, M. (2019). Rational design and characterization of bioplastics from Hermetia illucens prepupae proteins. Biopolymers, 110(5), e23250. https://doi.org/10.1002/bip.23250
Chen, C., Wu, Q., Wan, Z., Yang, Q., Xu, Z., Li, D., Jin, Y., & Rojas, O. J. (2022). Mildly processed chitin used in one-component drinking straws and single use materials: Strength, biodegradability and recyclability. Chemical Engineering Journal, 442, 136173. https://doi.org/10.1016/j.cej.2022.136173
Chintya, V., & Nugraha, R. (2017). Eksplorasi material limbah sedotan plastik pada aksesoris fesyen. eProceedings of Art & Design, 4(3), 1067–1086. Retrieved from https://openlibrarypublications.telkomuniversity.ac.id/index.php/artdesign/article/view/4839
Cunha, A. G., Fernandes, S. C. M., Freire, C. S. R., Silvestre, A. J. D., Neto, C. P., & Gandini, A. (2008). What is the real value of chitosan’s surface energy? Biomacromolecules, 9(2), 610–614. https://doi.org/10.1021/bm701199g
Divers Clean Action. (2018). Jumlah sedotan plastik di Indonesia. Retrieved from www.diverscleanaction.org
Ginting, M. H. S., Hasibuan, R., Lubis, M., Tanjung, D. S., & Iqbal, N. (2017). Effect of hydrochloric acid concentration as chitosan solvent on mechanical properties of bioplastics from durian seed starch (Durio zibethinus) with filler chitosan and plasticizer sorbitol. IOP Conference Series: Materials Science and Engineering, 180(1), 012126. https://doi.org/10.1088/1757-899X/180/1/012126
Ginting, M. H. S., Lubis, M., Sidabutar, T., & Sirait, T. P. (2018). The effect of increasing chitosan on the characteristics of bioplastic from starch talas (Colocasia esculenta) using plasticizer sorbitol. IOP Conference Series: Earth and Environmental Science, 126(1), 012147. https://doi.org/10.1088/1755-1315/126/1/012147
Indonesian Ministry of Environment and Forestry. (2021). Capaian kinerja pengolahan sampah. Retrieved from https://sipsn.menlhk.go.id/sipsn/
Jonsson, A., Andersson, K., Stelick, A., & Dando, R. (2021). An evaluation of alternative biodegradable and reusable drinking straws as alternatives to single‐use plastic. Journal of Food Science, 86(7), 3219–3227. https://doi.org/10.1111/1750-3841.15783
Le, T. M., Tran, C. L., Nguyen, T. X., Duong, Y. H. P., Le, P. K., & Tran, V. T. (2023). Green preparation of chitin and nanochitin from black soldier fly for production of biodegradable packaging material. Journal of Polymers and the Environment, 31(7), 3094–3105. https://doi.org/10.1007/s10924-023-02793-2
Lubis, M., Harahap, M. B., Manullang, A., Alfarodo, Ginting, M. H. S., & Sartika, M. (2017). Utilization starch of jackfruit seed (Artocarpus heterophyllus) as raw material for bioplastics manufacturing using sorbitol as plasticizer and chitosan as filler. Journal of Physics: Conference Series, 801, 012014. https://doi.org/10.1088/1742-6596/801/1/012014
Luchese, C. L., Pavoni, J. M. F., Dos Santos, N. Z., Quines, L. K., Pollo, L. D., Spada, J. C., & Tessaro, I. C. (2018). Effect of chitosan addition on the properties of films prepared with corn and cassava starches. Journal of Food Science and Technology, 55(8), 2963–2973. https://doi.org/10.1007/s13197-018-3214-y
Ma, X., Chang, P. R., Yang, J., & Yu, J. (2009). Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydrate Polymers, 75(3), 472–478. https://doi.org/10.1016/j.carbpol.2008.08.007
Mirwandhono, E., Nasution, M. I. A., & Yunilas. (2022). Extraction of chitin and chitosan black soldier fly (Hermetia illucens) prepupa phase on characterization and yield. IOP Conference Series: Earth and Environmental Science, 1114(1), 012019. https://doi.org/10.1088/1755-1315/1114/1/012019
Muchtar, Z., Sari, S. A., Rahmah, S., Zubir, M., & Sarumaha, G. E. (2023). The effect of chitosan and glycerol mixture on improving biodegradable plastic properties of young coconut husk (Cocos nucifera L.). Oriental Journal of Chemistry, 39(1), 95–101. https://doi.org/10.13005/ojc/390111
Nugroho, P. (2013). Panduan membuat pupuk kompos cair. Yogyakarta: Pustaka Baru Press. Retrieved from https://scholar.google.co.id/scholar?cluster=5408089592348017865&hl=id&as_sdt=2005&sciodt=0,5
Nwe, N., Furuike, T., & Tamura, H. (2014). Isolation and characterization of chitin and chitosan from marine origin. Advances in Food and Nutrition Research, 72, 1–15. https://doi.org/10.1016/B978-0-12-800269-8.00001-4
Pasaribu, M. (2021). Produksi biodegradable plastic dari limbah kulit pisang dengan penambahan kitosan. Prosiding Seminar Nasional Teknologi Industri (SNTI), 8(1), 433–435. Retrieved from https://journal.atim.ac.id/index.php/prosiding/article/view/430
Rizzi, V., Longo, A., Placido, T., Fini, P., Gubitosa, J., Sibillano, T., Giannini, C., Semeraro, P., Franco, E., Ferrandiz, M., & Cosma, P. (2018). A comprehensive investigation of dye–chitosan blended films for green chemistry applications. Journal of Applied Polymer Science, 135(10), 45945. https://doi.org/10.1002/app.45945
Safira, A. B., & Purbasari, A. (2023). Optimization and characterization of biodegradable film based on glutinous flour/glycerol/chitosan/ZnO using response surface methodology (RSM)—central composite design (CCD). Jurnal Kimia Sains dan Aplikasi, 25(10), 368–381. https://doi.org/10.14710/jksa.25.10.368-381
Siddiqui, S. A., Süfer, Ö., Çalışkan Koç, G., Lutuf, H., Rahayu, T., Castro-Muñoz, R., & Fernando, I. (2024). Enhancing the bioconversion rate and end products of black soldier fly (BSF) treatment–A comprehensive review. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04306-6
Singh, T. P., Chatli, M. K., & Sahoo, J. (2015). Development of chitosan based edible films: Process optimization using response surface methodology. Journal of Food Science and Technology, 52(5), 2530–2543. https://doi.org/10.1007/s13197-014-1318-6
Spies, R. D., & Hoseney, R. C. (1982). Effect of sugars on starch gelatinization. Cereal Chemistry, 59(2), 128–131. Retrieved from https://www.cerealsgrains.org/publications/cc/backissues/1982/Documents/chem59_128.pdf
Utami, M. R., Latifah, & Widiarti, N. (2014). Sintesis plastik biodegradable dari kulit pisang dengan penambahan kitosan dan plasticizer gliserol. Indonesian Journal of Chemical Science, 3(2), 163–167. https://doi.org/10.15294/ijcs.v4i2.6166
Wang, D., Huang, J., & Guo, Z. (2020). Tomato-lotus inspired edible superhydrophobic artificial lotus leaf. Chemical Engineering Journal, 400, 125883. https://doi.org/10.1016/j.cej.2020.125883
Waśko, A., Bulak, P., Polak-Berecka, M., Nowak, K., Polakowski, C., & Bieganowski, A. (2016). The first report of the physicochemical structure of chitin isolated from Hermetia illucens. International Journal of Biological Macromolecules, 92, 316–320. https://doi.org/10.1016/j.ijbiomac.2016.07.038
World Bank. (2021). Plastic waste discharges from rivers and coastlines in Indonesia. The World Bank. Retrieved from https://www.worldbank.org/en/country/indonesia/publication/plastic-waste-discharges-from-rivers-and-coastlines-in-indonesia
Refbacks
- There are currently no refbacks.