The Effect of Voltage on HDPE Microplastic Removal by Electrocoagulation Process Using Stainless Steel Electrode

Mei Dian Syaputra, Pranoto Pranoto, Triana Kusumaningsih

Abstract

Plastic pollution, especially high-density polyethylene (HDPE), is highly concerned with human health and ecosystems. This study investigates the potential of the electrocoagulation process on the removal of HDPE microplastics from water, evaluating the best operating conditions, including the voltage (4, 8, and 12 V), time (40, 80, and 120 minutes), and pH (3, 5, 7, and 9) to achieve the maximum removal efficiency. Coagulation experiments were conducted in the electrolytic cell, using stainless steel and aluminum electrodes, while Na₂SO₄ served as the electrolyte. Because loss of surface area and change in structure was more evident in fragmented flake and granular microplastics (FTIR and SEM analyses), those microplastics were more retained in the swollen coagulant. The alkaline condition also supports the highest removal efficiency of 96.60% when the pH, voltage, and duration were 9, 8V, and 120 minutes, respectively, as experienced in addition to 0.1g of carbon CTO5 in the study. Conclusions Our findings show that electrocoagulation works best at a medium voltage and in alkaline pH conditions. Under low pH conditions, the removal is not notably influenced by the applied voltage, whereas under neutral and alkaline conditions, removal is significantly enhanced with increased voltage. Moreover, the stainless steel electrodes were more corrosion-resistant than aluminum, thus making the process more sustainable. The results indicate that electrocoagulation represents an environmentally friendly, effective microplastic removal method under the right voltage, time, and pH conditions. Such techniques are an effective strategy that helps reduce water contamination and conserve ecosystems.

Keywords

HDPE; Microplastic Removal; Electrocoagulation Process; Stainless Steel Electrode; Alkaline pH Optimization; Environmental Water Treatment;

Full Text:

PDF

References

[1] F. C. Alam, E. Sembiring, B. S. Muntalif, and V. Suendo, “Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia),” Chemosphere, vol. 224, pp. 637–645, 2019, doi: 10.1016/j.chemosphere.2019.02.188.

[2] European Commission’s Group of Chief Scientific Advisors, Environmental and Health risks of Microplastic pollution, no. 6. 2019. doi: 10.2777/54199.

[3] E. R. Meiwinda, Lucyana, and Destiarini, “Distribusi dan sebaran mikroplastik di sedimen perairan Sungai Ogan Kabupaten Ogan Komering Ulu,” J. Ilmu Lingkung., vol. 21, no. 2, pp. 387–392, 2023, doi: 10.14710/jil.21.2.387-392.

[4] F. C. Alam and M. Rachmawati, “Development of Microplastic Research in Indonesia,” J. Presipitasi Media Komun. dan Pengemb. Tek. Lingkung., vol. 17, no. 3, pp. 344–352, 2020, doi: 10.14710/presipitasi.v17i3.344-352.

[5] S. W. Sandra and A. D. Radityaningrum, “Kajian Kelimpahan Mikroplastik di Biota Perairan,” J. Ilmu Lingkung., vol. 19, no. 3, pp. 638–648, 2021, doi: 10.14710/jil.19.3.638-648.

[6] H. Park and B. Park, “Review of Microplastic Distribution, Toxicity, Analysis Methods, and Removal Technologies,” Water, 2021, doi: 10.3390/w13192736.

[7] K. Senathirajah, A. Kemp, M. Saaristo, S. Ishizuka, and T. Palanisami, “Polymer prioritization framework: A novel multi-criteria framework for source mapping and characterizing the environmental risk of plastic polymers,” J. Hazard. Mater., vol. 429, no. December 2021, 2022, doi: 10.1016/j.jhazmat.2022.128330.

[8] K. Senathirajah, S. Attwood, G. Bhagwat, M. Carbery, S. Wilson, and T. Palanisami, “Estimation of the mass of microplastics ingested – A pivotal first step towards human health risk assessment,” J. Hazard. Mater., vol. 404, no. September 2020, 2021, doi: 10.1016/j.jhazmat.2020.124004.

[9] S. Özsoy, S. Gündogdu, S. Sezigen, E. Tasalp, D. A. Ikiz, and A. E. Kideys, “Presence of microplastics in human stomachs,” Forensic Sci. Int., vol. 364, no. August, 2024, doi: 10.1016/j.forsciint.2024.112246.

[10] R. P. Sihombing and Y. T. Sarungu, “Pengolahan Air Limbah Industri Tekstil dengan Metoda Elektrokoagulasi Menggunakan Elektroda Besi (Fe) dan Aluminum (Al),” JC-T (Journal Cis-Trans) J. Kim. dan Ter., vol. 6, no. 2, pp. 11–18, 2022, doi: 10.17977/um0260v6i22022p011.

[11] M. Shen et al., “Efficient removal of microplastics from wastewater by an electrocoagulation process,” Chem. Eng. J., vol. 428, no. July 2021, 2022, doi: 10.1016/j.cej.2021.131161.

[12] Fitriyanti, “Pengaruh Luas Permukaan Elektroda dengan Penambahan PWM Controller terhadap Efisiensi Produksi Gas Hidrogen pada Proses Elektrolisis,” J. Sains Fis., vol. 1, pp. 42–52, 2021.

[13] M. D. S. Siti Khoiriyah, “Bioremediation to Overcome Microplastic Contamination in The Water Environment,” IOP Conf. Ser. Earth Environ. Sci., vol. 1317, 2024, doi: 10.1088/1755-1315/1317/1/012027.

[14] K. Senathirajah, R. Kandaiah, L. Panneerselvan, C. I. Sathish, and T. Palanisami, “Fate and transformation of microplastics due to electrocoagulation treatment: Impacts of polymer type and shape,” Environ. Pollut., vol. 334, no. March, p. 122159, 2023, doi: 10.1016/j.envpol.2023.122159.

[15] F. Rosariawari, A. Rachmanto, M. Mirwan, and D. Rahmayanti, “Electrocoagulation Process to Reduce Microplastic in Wonokromo Surface Water,” 2nd International Conf. Eco-Innovation Sci. Eng. Technol., vol. 2021, pp. 142–147, 2021, [Online]. Available: 10.11594/nstp.2021.1423.

[16] S. Marwati, I. Supiah, Y. Lousise, R. T. Padmaningrum, Z. Hamida, and A. Julia, “Aplikasi variasi jumlah pelat elektroda Al-Fe pada pengurangan mikroplastik dalam limbah masker secara elektrokoagulasi Application of variation in Al-Fe electrode plates to reduce microplastics in masks waste by electrocoagulation,” J. Penelit. Saintek, vol. 28, pp. 132–142, 2023, doi: 10.21831/jps.v1i2.67098.

[17] C. Akarsu, H. Kumbur, and A. E. Kideys, “Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes,” Water Sci. Technol., vol. 84, no. 7, pp. 1648–1662, 2021, doi: 10.2166/wst.2021.356.

[18] K. T. Kim and S. Park, “Enhancing microplastics removal from wastewater using electro-coagulation and granule-activated carbon with thermal regeneration,” Processes, vol. 9, no. 4, 2021, doi: 10.3390/pr9040617.

[19] H. Zhan et al., “Iron electrocoagulation activated peracetic acid for efficient degradation of sulfamethoxazole,” Chem. Eng. Res. Des., vol. 200, no. October, pp. 244–255, 2023, doi: 10.1016/j.cherd.2023.10.042.

[20] D. Purwati, “The Use of Iron (Fe), Copper (Cu), and Stainless Steel Electrodes On The Electrocoagulation Process Waste Chili Sauce to Reduce BOD and TSS Parameters,” J. At., vol. 3, no. 1, pp. 26–30, 2018.

[21] E. Kuka et al., “A step to microplastic formation : Microcracking and associated surface transformations of recycled LDPE, LLDPE , HDPE , and PP plastics exposed to UV radiation,” Polym. Degrad. Stab. J., vol. 229, no. April, 2024, doi: 10.1016/j.polymdegradstab.2024.110.

[22] V. Aishwarya et al., “Determination of microplastics in the wetlands of specific regional area and unveiling the toxic properties of predominant HDPE particle on animal and plant models,” Process Saf. Environ. Prot. J., vol. 182, no. November 2023, pp. 1047–1059, 2024, doi: 10.1016/j.psep.2023.11.001.

[23] S. Bhatt, C. Fan, M. Liu, and B. Wolfe-Bryant, “Effect of High-Density Polyethylene Microplastics on the Survival and Development of Eastern Oyster (Crassostrea virginica) Larvae,” Int. J. Environ. Res. Public Health, vol. 20, no. 12, 2023, doi: 10.3390/ijerph20126142.

[24] A. Bringer et al., “High density polyethylene (HDPE) microplastics impair development and swimming activity of Pacific oyster D-larvae, Crassostrea gigas, depending on particle size,” Environ. Pollut., vol. 260, 2020, doi: 10.1016/j.envpol.2020.113978.

[25] N. Karuniastuti, “Bahaya Plastik terhadap Kesehatan dan Lingkungan,” Swara Patra Maj. Pusdiklat Migas, vol. 3, no. 1, pp. 6–14, 2013, [Online]. Available: http://ejurnal.ppsdmmigas.esdm.go.id/sp/index.php/swarapatra/article/view/43/65

[26] D. Mentes et al., “Combustion behaviour of plastic waste – A case study of PP, HDPE, PET, and mixed PES-EL,” J. Clean. Prod., vol. 402, no. March, 2023, doi: 10.1016/j.jclepro.2023.136850.

[27] B.-K. Min, C.-R. Cho, H.-S. Cheon, H.-Y. Soh, and H.-S. Cho, “A Study on the Distribution of Microplastics in the South Coast of Korea and Gwangyang Bay,” Microplastics, vol. 3, no. 3, pp. 355–372, 2024, doi: 10.3390/microplastics3030022.

[28] C. Fan, Y. Z. Huang, J. N. Lin, and J. Li, “Microplastic constituent identification from admixtures by Fourier-transform infrared (FTIR) spectroscopy: The use of polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and nylon (NY) as the model constituent,” Environ. Technol. Innov., vol. 23, p. 101798, 2021, doi: 10.1016/j.eti.2021.101798.

[29] A. O. Adıgüzel et al., “Identification of Cutinolytic Esterase from Microplastic-Associated Microbiota Using Functional Metagenomics and Its Plastic Degrading Potential,” Mol. Biotechnol., vol. 66, no. 10, pp. 2995–3012, 2023, doi: 10.1007/s12033-023-00916-7.

[30] A. B. D. Nandiyanto, R. Ragadhita, and M. Fiandini, “Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition,” Indones. J. Sci. Technol., vol. 8, no. 1, pp. 113–126, 2023, doi: 10.17509/ijost.v8i1.53297.

[31] K. K. Gupta, H. Chandra, K. Sagar, K. K. Sharma, and D. Devi, “Degradation of high density polyethylene (HDPE) through bacterial strain from Cow faeces,” Biocatal. Agric. Biotechnol., vol. 48, no. February, p. 102646, 2023, doi: 10.1016/j.bcab.2023.102646.

[32] J. A. Rodríguez-Liébana et al., “Morpho-structural and thermo-mechanical characterization of recycled polypropylene and polystyrene from mixed post-consumer plastic waste,” J. Environ. Chem. Eng., vol. 10, no. 5, 2022, doi: 10.1016/j.jece.2022.108332.

Refbacks

  • There are currently no refbacks.