Determination of Temperature, pH, Salinity, Dissolved Oxygen, TDS, TSS, and Nitrite Content in 42-Day-Old Shrimp Farming Ponds

Muhaimin Muhaimin, Putri Meliyani, Dadan Kurnia

Abstract

This study was to determine water quality in shrimps farming through parameters temperature, pH, salinity, Dissolved Oxygen (DO), Total Suspended Solid (TSS), Total Dissolve Solid (TDS) [1,8,2]. Databases for all shrimp farms were created Water quality heavily impacts shrimp health, growth, and disease susceptibility. TDS and TSS were determined by gravimetric analysis, and nitrite was determined by UV-Vis spectrophotometry at 545 nm. Inlets, ponds and outlets were sampled to compare quality differences. The highest temperature (27.9°C) and DO (7.23 mg/L) values were found in the pond, while the inlet had the highest pH (7.54) and salinity (19 psu). TSS (0.055 mg/L) and TDS (20.460 mg/L) were highest in inlet too. The levels of nitrite at the inlet, pond and outlet were an average of 0.0073, 0.0249 and 0.0501 mg/L respectively. Nitrite in shrimp feed was 0.0535±0.0029 mg/L. The analytical parameters for the detection of quercetin were found to have excellent linearity with R² = 0.9959, precision with CV Horwitz ≤10.14%, and accuracy with 90.33–95.04%. The results showed that temperature, pH, salinity, DO, TSS, and TDS levels are suitable and that the acceptable nitrite concentration of the samples fits into the criteria for sustainable shrimp farming

Keywords

Shrimp; Pond; water quality; nitrite; spectrophotometric

Full Text:

PDF

References

[1] Direktorat Jendral Perikanan, Profil Pasar Udang. Indonesia: Kementerian Kelautan dan Perikanan Republik Indonesia, 2023.

[2] S. Sumeru, Pakan Udang. Yogyakarta: Kanisius, 2009.

[3] P. M. Widiyanti, “Environmental Impacts of Shrimp Farming and Benefit of Pond Intensification for Sustainable Aquaculture: A Review,” in icse, 2021, pp. 282–295.

[4] J. M. Ebeling, M. B. Timmons, and J. J. Bisogni, “Engineering Analysis of The Stoichiometry of Photoautotrophic, Autotrophic, and Heterotrophic Removal of Ammonia–Nitrogen in Aquaculture Systems,” Aquaculture, vol. 257, no. 1–4, pp. 346–358, Jun. 2006, doi: 10.1016/J.AQUACULTURE.2006.03.019.

[5] M. T. Gutierrez-Wing and R. F. Malone, “Biological Filters in Aquaculture: Trends and Research Directions for Freshwater and Marine Applications,” Aquac. Eng., vol. 34, no. 3, pp. 163–171, 2006, doi: 10.1016/j.aquaeng.2005.08.003.

[6] Badan Standardisasi Nasional, Air dan air limbah – Bagian 9: Cara Uji Nitrit (NO2-N) Secara Spektrofotometri. Indonesia: Badan Standardisasi Nasional, 2004. [Online]. Available: sainstkim.teknik.ub.ac.id

[7] P. Singh, M. K. Singh, Y. R. Beg, and G. R. Nishad, “A Review on Spectroscopic Methods for Determination of Nitrite and Nitrate in Environmental Ssamples,” Talanta, vol. 191, pp. 364–381, 2019, doi: 10.1016/j.talanta.2018.08.028.

[8] M. J. Moorcroft, J. Davis, and R. G. Compton, “Detection and Determination of Nitrate and Nitrite: A Review,” Talanta, vol. 54, pp. 785–803, 2001, doi: 10.1016/S0039-9140(01)00323-X.

[9] R. M. Mazumdar, M. Sharif, T. A. Khan, M. M. Rahman, and A. T. M. Abdullah, “Simultaneous Determination of Nitrite and Nitrate in Meat and Meat Products Using Ion-Exchange Chromatography,” Food Res., vol. 6, no. 3, pp. 145–152, 2022, doi: 10.26656/fr.2017.6(3).339.

[10] Riyanto, Validasi dan Verifikasi Metode Uji Sesuai dengan ISO/IEC 17025 Laboratorium Pengujian dan Kalibrasi. Yogyakarta: Deepublish, 2014.

[11] Suwarsih, Marsoedi, N. Harahab, and M. Mahmudi, “Kondisi Kualitas Air Pada Budidaya Udang Di Tambak Wilayah Pesisir Kecamatan Palang Kabupaten Tuban,” in Prosiding Seminar Nasional Kelautan 2016, 2016, pp. 138–143.

[12] Republik Indonesia, Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 Tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup. Indonesia, 2021.

[13] M. Janna, S. A. Sijid, and H. Hasmawati, “Analisa Kualitas Air pada Calon Induk Udang Vaname Litopenaeus vannamei (Boone, 1931) di Balai Perikanan Budidaya Air Payau (BPBAP) Takalar,” Filogeni J. Mhs. Biol., vol. 2, no. 3, pp. 64–68, 2022, doi: 10.24252/filogeni.v2i3.29469.

[14] Supriatna, M. Mahmudi, M. Musa, and Kusriani, “Hubungan pH Dengan Parameter Kualitas Air pada Tambak Intensif Udang Vanamei (Litopenaeus vannamei),” JFMR-Journal Fish. Mar. Res., vol. 4, no. 3, pp. 368–374, 2020, doi: 10.21776/ub.jfmr.2020.004.03.8.

[15] Supriatna, A. Darmawan, and A. Maizar, “Pathway Analysis of pH in Whiteleg Shrimp, Litopenaeus Vannamei Concrete Pond Intensifies in Banyuwangi East Java,” IOP Conf. Ser. Earth Environ. Sci., vol. 1191, no. 1, 2023, doi: 10.1088/1755-1315/1191/1/012015.

[16] M. S. Chakravarty, P. Ganesh, D. Amarnath, B. S. Sudha, and S. T. Babu, “Spatial Variation of Water Quality Parameters of Shrimp (Litopenaeus vannamei) Culture Ponds at Narsapurapupeta, Kajuluru and Kaikavolu villages of East Godavari district, Andhra Pradesh,” IJFAS, vol. 4, no. 4, pp. 390–395, 2016, [Online]. Available: www.fisheriesjournal.com.

[17] I. Dwisaputra, B. Rolastin, Irwan, and A. Sateria, “Pengambilan Keputusan Untuk Kualitas Air Pada Tambak Udang,” Gema Teknol., vol. 20, no. 3, pp. 85–90, 2019.

[18] W. Gao, L. Tian, T. Huang, M. Yao, W. Hu, and Q. Xu, “Effect of Salinity on The Growth Performance, Osmolarity and Metabolism-Related Gene Expression in White Shrimp Litopenaeus Vannamei,” Aquac. Reports, vol. 4, pp. 125–129, 2016, doi: 10.1016/j.aqrep.2016.09.001.

[19] L. Q. Pan, L. X. Jiang, and J. J. Miao, “Effects of Salinity and pH on Immune Parameters of The White Shrimp Litopenaeus vannamei,” J. Shellfish Res., vol. 24, no. 4, pp. 1223–1227, 2005, doi: 10.2983/0730-8000(2005)24[1223:EOSAPO]2.0.CO;2.

[20] Y. D. Jaffer, R. Saraswathy, M. Ishfaq, J. Antony, D. S. Bundela, and P. C. Sharma, “Effect of Low Salinity on The Growth and Survival of Juvenile Pacific White Shrimp, Penaeus vannamei: A revival,” Aquaculture, vol. 515, p. 734561, 2020, doi: 10.1016/j.aquaculture.2019.734561.

[21] W. Ruan, Y. Dong, Z. Lin, and L. He, “Molecular Characterization of Aquaporins Genes from the Razor Clam Sinonovacula constricta and Their Potential Role in Salinity Tolerance,” Fishes, vol. 7, no. 69, 2022, doi: 10.3390/fishes7020069.

[22] F. Liu et al., “Assessing the Interactive Effects of High Salinity and Stocking Density on the Growth and Stress Physiology of the Pacific White Shrimp Litopenaeus vannamei,” Fishes, vol. 9, no. 62, 2024, doi: 10.3390/fishes9020062.

[23] B. Ali, . A., and A. Mishra, “Effects of dissolved oxygen concentration on freshwater fish: A review,” Int. J. Fish. Aquat. Stud., vol. 10, no. 4, pp. 113–127, 2022, doi: 10.22271/fish.2022.v10.i4b.2693.

[24] P. C. Wilson, “Water Quality Notes: Dissolved Oxygen,” EDIS, vol. 2, pp. 1–8, 2010, doi: 10.32473/edis-ss525-2010.

[25] A. Wafi, H. Ariadi, A. Muqsith, M. Mahmudi, and M. Fadjar, “Oxygen Consumption of Litopenaeus vannamei in Intensive Ponds Based on the Dynamic Modeling System,” J. Aquac. Fish Heal., vol. 10, no. 1, pp. 17–24, 2021, doi: 10.20473/jafh.v10i1.18102.

[26] Badan Standardisasi Nasional, Udang vaname (Litopenaeus vannamei, Boone 1931) Bagian 1: Produksi induk model indoor. Indonesia, 2014.

[27] R. M. Nagisetty, K. F. Flynn, and D. Uecker, “Dissolved oxygen modeling of effluent-dominated macrophyte-rich Silver Bow Creek,” Ecol. Modell., vol. 393, no. March 2018, pp. 85–97, 2019, doi: 10.1016/j.ecolmodel.2018.12.009.

[28] A. N. Araujo et al., “Effects of Minimum Dissolved Oxygen Setpoints for Aeration in Semi-Intensive Pond Production of Pacific white Shrimp (Litopenaeus vannamei),” Aquaculture, vol. 594, p. 741376, 2025, doi: 10.1016/j.aquaculture.2024.741376.

[29] A. Rahman, J. Dabrowski, and J. McCulloch, “Dissolved Oxygen Prediction in Prawn Ponds from a Group of One Step Predictors,” Inf. Process. Agric., vol. 7, no. 2, pp. 307–317, 2020, doi: 10.1016/j.inpa.2019.08.002.

[30] S. Patkaew, S. Direkbusarakom, I. Hirono, S. Wuthisuthimethavee, S. Powtongsook, and C. Pooljun, “Effect of Supersaturated Dissolved Oxygen on Growth, Survival, and Immune-related Gene Expression of Pacific White Shrimp (Litopenaeus vannamei),” Vet. World, vol. 17, no. 1, pp. 50–58, 2024, doi: 10.14202/vetworld.2024.50-58.

[31] Y. Thipwimonmas et al., “A Simple and Rapid Spectrophotometric Method for Nitrite Detection in Small Sample Volumes,” Chemosensors, vol. 9, no. 7, pp. 1–11, 2021, doi: 10.3390/chemosensors9070161.

[32] B. U. Gauthama, B. Narayana, B. K. Sarojini, K. Bello, and N. K. Suresh, “Nitrate/Nitrite Determination in Water and Soil Samples Accompanied by In Situ Azo Dye Formation and Its Removal by Superabsorbent Cellulose Hydrogel,” SN Appl. Sci., vol. 2, no. 7, pp. 1–16, 2020, doi: 10.1007/s42452-020-3016-5.

[33] A. H. Jendia, S. Hamzah, A. A. Abuhabib, and N. M. El-Ashgar, “Removal of nitrate from groundwater by eggshell biowaste,” Water Sci. Technol. Water Supply, vol. 20, no. 7, pp. 2514–2529, 2020, doi: 10.2166/ws.2020.151.

[34] Indonesia, Peraturan Kelautan Dan Perikanan Republik Indonesia Nomor No.75/PERMEN-KP/2016 Tentang Pedoman Umum Pembesaran Udang Windu (Penaeus Monodon) Dan Udang Vaname (Litopenaeus Vannamei). Indonesia, 2016, pp. 1–43.

[35] S. Rohani, “Pengamatan Kualitas Air (Amonia dan Nitrit) Pada Budidaya uadng Vaname (Litopenaeus vannamei) Dengan Salinitas Rendah yang Diaplikasi Zeolit dan Dolomit,” Bul. Tek. Lit. Akuakultur, vol. 10, no. 2, pp. 81–84, 2012.

[36] M. R. Rifalda, Robin, and N. MZ, “Evaluasi performa pertumbuhan dan kualitas air udang vannamei ( Litopenaeus vannamei ) pada sistem budidaya intensif Evaluation of growth performance and water quality of vannamei shrimp (Litopenaeus vannamei) in intensive cultivation systems,” J. Mina Sains, vol. 9, no. 41, pp. 73–80, 2023.

[37] H. A. Tamhid, T. Hertiani, Y. B. Murti, and R. Murwanti, “Quantification of Enhydrin and Uvedalin in the Ethanolic Extract of Smallanthus sonchifolius Leaves Validated by the HPLC Method,” Molecules, vol. 28, no. 1913., 2023, doi: 10.3390/molecules28041913.

[38] M. Filip, D. Prodan, M. Moldovan, and M. Vlassa, “Determination of Nitrate and Nitrite Content in Zonar Milk Serum and Derived Dairy Drinks Using Ion-Pair Reversed-Phase High Performance Liquid Chromatography,” Stud. Univ. Babes-Bolyai Chem, vol. 64, no. 1, pp. 197–206, 2019, doi: 10.24193/subbchem.2019.1.16.

[39] A. Numan, A. Al-Nedhary, M. Al-Hamadi, S. Saleh, F. Ghaleb, and M. Galil, “Novel Spectrophotometric Method with Enhanced Sensitivity for the Determination of Nitrite in Vegetables,” Jordan J. Earth Environ. Sci., vol. 12, no. 1, pp. 13–21, 2021.

[40] H. S. Lim, E. Choi, S. J. Lee, H. S. Nam, and J. K. Lee, “Improved Spectrophotometric Method for Nitrite Determination in Processed Foods and Dietary Exposure Assessment for Korean Children and Adolescents,” Food Chem., vol. 367, p. 130628, 2022, doi: 10.1016/j.foodchem.2021.130628.

[41] Harmita, “Petunjuk Pelaksanaan Validasi dan Cara Penggunaannya,” Maj. Ilmu Kefarmasian, vol. 1, no. 3, pp. 117–135, 2004.

[42] D. Coviello et al., “Validation Of An Analytical Method For Nitrite And Nitrate Determination In Meat Foods For Infants By Ion Chromatography With Conductivity Detection,” Foods, vol. 9, no. 1238, 2020, doi: 10.3390/foods9091238.

Refbacks

  • There are currently no refbacks.