Development of a Spreadsheet-Based Virtual Laboratory to Improve Students' Science Process Skills

Cut Utari Lydia Fitri, Ibnu Khaldun, Abdul Gani, Zulfadli Zulfadli, Mujakir Mujakir

Abstract

The media virtual lab was developed with a spreadsheet that displayed 168 electrolysis reactions and performed reaction calculations. The implementation is done to improve the Science Process Skills (SPS) using the power of media. The design is an application of the model Analysis, Design, Development, Implementation, and Evaluation (ADDIE) of Research and Development (R&D). The VL was validated and revised by three media experts, who gave 88 on a score scale and were categorized as the highly qualified assessment of media, material, and visual communication. VL is used more in experimental classes than in control classes and SPS. Both of these classes include descriptions of tests, while SPS description tests generated normal but distributed data with a value of 0,502>0,05. The Levene test with a value of 0.849>0.05 indicates that the data is homogenous. The VL is there is a significant difference because the result of t test value obtained are 0,000<0x7E>0.05. The percentage score of each indicator from the experimental class is compared with the control class, which has a high percentage of each indicator. The farthest difference is the domain for movement manipulation and procedure implementation skills. This lends evidence to the hypothesis test that using VL can augment SPS.

Keywords

ADDIE; virtual laboratory; science process skill; electrolysis

Full Text:

PDF

References

[1] E. Risdianto, Wachidi, Riyanto, I. Fathurochman, M. Yanto, and A. Asmara, “Feasibility test of learning media with blended learning model and augmented reality assisted MOOCs,” Indones. J. Soc. Sci., vol. 10, no. 1, pp. 149–164, 2022, doi: https://doi.org/10.26811/peuradeun.v10i1.626.

[2] H. Lisdiana, Y. Rahmawati, and A. Ridwan, “Development of 21st-century skills through STEAM PjBL in salt hydrolysis and buffer solutions,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 8, no. 2, pp. 280–296, 2023, doi: 10.20961/jkpk.v8i2.76177.

[3] Yusrizal and K. Hanif, “Increasing of students’ motivation in learning physics through the use of computer simulation media viewed from parents’ employment background.,” J. Soc. Sci., vol. 5, no. 2, pp. 201–212, 2017, doi: 10.26811/peuradeun.v5i2.129.

[4] Jabaliah, M. Adlim, M. Syukri, and Evendi, “Learning of multimedia-based physics concept applications to improve students ’ motivation and science process skills,” Indones. J. Soc. Sci., vol. 9, no. 3, pp. 681–702, 2021, doi: 10.26811/peuradeun.v9i3.557.

[5] A. Elvanisi, S. Hidayat, and E. N. Fadilah, “Analisis keterampilan proses sains siswa sekolah menengah atas,” J. Inov. Pendidik. IPA, vol. 4, no. 20, pp. 245–252, 2018, doi: 10.21831/jipi.v4i2.21426.

[6] M. Adlim, R. Nuzulia, and C. Nurmaliah, “The Effect of conventional laboratory practical manuals on pre- service teachers ’ integrated science process skills,” J. Educ., vol. 15, no. 4, pp. 116–129, 2018, doi: 10.12973/tused.10250a.

[7] I. Damopolii, U. Keley, D. T. Rianjani, J. H. Nunaki, E. Nusantari, and N. Y. Kandowangko, “Potential of inquiry-based learning to train student ’ s metacognitive and science process skill,” Indones. J. Soc. Sci., vol. 8, no. 1, pp. 83–98, 2020, doi: 10.26811/peuradeun.v8i1.351.

[8] N. P. L. C. Dewi and S. Atun, “The Effect of science technology society ( STS ) learning on students ’ science process skills,” Indones. J. Soc. Sci., vol. 7, no. 1, pp. 113–124, 2019, doi: 10.26811/peuradeun.v7i1.288.

[9] S. Dolapcioglu and M. Subası, “The Relationship between scientific process skills and science achievement : a meta-analysis study,” J. Sci. Learn., vol. 5, no. October 2021, pp. 363–372, 2022, doi: 10.17509/jsl.v5i2.39356.

[10] A. H. Maksum and Y. Saragih, “Analisis penerapan virtual laboratorium versus reality laboratorium,” J. TIARSIE, vol. 17, no. 2, p. 47, 2020, doi: 10.32816/tiarsie.v17i2.72.

[11] N. Maksimenko, A. Okolzina, A. Vlasova, C. Tracey, and M. Kurushkin, “Introducing atomic structure to first-year undergraduate chemistry students with an immersive virtual reality experience,” J. Chem. Educ., vol. 98, no. 6, pp. 2104–2108, 2021, doi: 10.1021/acs.jchemed.0c01441.

[12] H. R. Widarti, M. I. Hakim, and D. A. Rokhim, “The Development of a virtual laboratory on qualitative chemical practicum analysis,” Indones. J. Soc. Sci., vol. 10, no. 3, pp. 785–804, 2022, doi: 10.26811/peuradeun.v10i3.760.

[13] H. Xu et al., “Thermal perception method of virtual chemistry experiments,” Virtual Real. Intell. Hardw., vol. 2, no. 4, pp. 305–315, 2020, doi: 10.1016/j.vrih.2020.07.003.

[14] S. M. Reeves, K. J. Crippen, and E. D. McCray, “The varied experience of undergraduate students learning chemistry in virtual reality laboratories,” Comput. Educ., vol. 175, no. March, p. 104320, 2021, doi: 10.1016/j.compedu.2021.104320.

[15] Anizar, A. Gani, I. Khaldun, and M. Bahi, “The Development of a module with microsoft excel-based interactive media on the topic of buffer solution,” J. Phys. Conf. Ser., vol. 1088, 2018, doi: 10.1088/1742-6596/1088/1/012119.

[16] F. Beichumila, B. Bahati, and E. Kafanabo, “Computer simulations and animations in the teaching and learning of chemical kinetics , equilibrium , and energetics : Assessing teachers ’ pedagogical skills in Tanzania secondary schools,” J. Math. Sci. Technol. Educ., vol. 18, no. 11, pp. 1–17, 2022, doi: 10.29333/ejmste/12498.

[17] W. C. Lee, N. W. Leng, D. Chen, and T. Lin, “Fostering changes in teacher attitudes toward the use of computer simulations: Flexibility, pedagogy, usability and needs,” Educ. Inf. Technol., no. 162, 2021, doi: 10.1007/s10639-021-10506-2.

[18] L. A. Warning and K. Kobylianskii, “A Choose-your-own-adventure-style virtual lab activity,” J. Chem. Educ., vol. 98, no. 3, pp. 924–929, 2021, doi: 10.1021/acs.jchemed.0c01241.

[19] A. D. Rahmat, I. Wilujeng, and H. Kuswanto, “The Effect of mobile learning integrated traditional games egrang to improve multiple representation skills,” J. Sci. Learn., vol. 6, no. September, 2023, doi: 10.17509/jsl.v6i4.57961.

[20] F. Öztop, “A Meta-analysis of the effectiveness of digital technology-assisted STEM education,” J. Sci. Learn., vol. 6, no. March, pp. 136–142, 2023, doi: 10.17509/jsl.v6i2.52316.

[21] N. F. Rahmadani, S. Retno, D. Ariani, S. Mulyani, and N. Y. Indriyanti, “Effectiveness of virtual stem laboratories for enhancing high school students ’ creativity and stem literacy,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 8, no. 1, pp. 26–36, 2023, doi: 10.20961/jkpk.v8i1.64548.

[22] A. K. Ilahi, C. Z. Subarkah, and Y. Sukmawardini, “Penerapan media pembelajaran laboratorium virtual untuk meningkatkan kemampuan representasi kimia pada materi sel elektrolisis,” Pros. Semin. Nas. Kim., vol. 7, pp. 25–37, 2022, [Online]. Available: https://conferences.uinsgd.ac.id/index.php/gdcs/article/view/602.

[23] P. Sutanto, Praktikum maya untuk mendukung pembelajaran jarak jauh di SMA. Jakarta: Direktorat Sekolah Menengah Atas, 2020.

[24] F. Solikhin, K. H. Sugiyarto, and J. Ikhsan, “The Impact of virtual laboratory integrated into hybrid learning use on students ’ achievement,” Indones. J. Soc. Sci., vol. 7, no. 1, pp. 81–94, 2019, doi: 10.26811/peuradeun.v7i1.268.

[25] C. Lyundzira, W. A. Sari, and F. I. Hasanah, Langkah SPSS : uji hipotesis perbedaan rata- rata atau uji T. Yogyakarta: Universitas Gadjah Mada, 2019.

[26] A. Ramdani, A. W. Jufri, and J. Jamaluddin, “Pengembangan media pembelajaran berbasis android pada masa pandemi covid-19 untuk meningkatkan literasi sains peserta didik,” J. Kependidikan J. Has. Penelit. dan Kaji. Kepustakaan di Bid. Pendidikan, Pengajaran dan Pembelajaran, vol. 6, no. 3, p. 433, 2020, doi: 10.33394/jk.v6i3.2924.

[27] I. Khaldun, “ProAnaltes 22.” Direktorat jenderal kekayaan intelektual, banda aceh, 2022, [Online]. Available: https://e-hakcipta.dgip.go.id/index.php/c?code=ZjU2ZTQ3ZWE0NWFlYjVmMDQ3NWY2ZThiZGIwYWVmNjEK.

[28] S. Belia, “The Effect of the model of experiential learning model towards students’ science process skill in natural science learning at SD pembangunan laboratorium padang state university,” TOFEDU: The Future of Education Journal, vol. 1, no. 2. pp. 111–123, 2022, doi: 10.61445/tofedu.v1i2.30.

[29] M. Ekici and M. Erdem, “Developing science process skills through mobile scientific inquiry,” Think. Ski. Creat., vol. 36, p. 100658, 2020, doi: 10.1016/j.tsc.2020.100658.

[30] A. Ibrahim, M. Elfeky, T. Saleem, Y. Masadeh, M. Yasien, and H. Elbyaly, “Advance oranizers in flipped classroom via-elearning management system and the promotion of integrated science process skills,” Think. Ski. Creat., vol. 35, pp. 1–31, 2020, doi: 10.1016/j.tsc.2019.100622.

[31] R. Hayanum, R. Permana sari, and nurhafidhah, “pengembangan media pembelajaran e-modul interaktif dengan menggunakan aplikasi exe-learning,” KATALIS J. Penelit. Kim. dan Pendidik. Kim., vol. 5, no. 2, pp. 7–17, 2023, doi: 10.33059/katalis.v5i2.6970.

[32] F. Rahmawati, I. P. Leksono, and U. Rohman, “Pengembangan e-modul mata pelatihan pemetaan kompetensi dan indikator berbasis flip PDF corporate edition dengan menggunakan model ADDIE pada pelatihan metodologi pembelajaran di balai diklat keagamaan Surabaya,” EDUKASIA J. Pendidik. dan Pembelajaran, vol. 4, no. 2, pp. 1647–1656, 2023, doi: 10.62775/edukasia.v4i2.469.

[33] Marlina and Riyanto, “Developing animation video-based demonstration experiments on the topic solubility and solubility product,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 6, no. 2, pp. 163–172, 2021, doi: 10.20961/jkpk.v6i2.52044.

Refbacks

  • There are currently no refbacks.