Green Synthesis of SnO2 Nanocrystals Using Garcinia Mangostana L Fruit Peels Extract as Natural Capping Agent
Abstract
Keywords
Full Text:
PDFReferences
[1] Y. Kong et al., “SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review,” Nano Mater. Sci., vol. 4, no. 4, pp. 339–350, 2022,
doi: 10.1016/j.nanoms.2021.05.006.
[2] E. Q. González et al., “A Study of the Optical and Structural Properties of SnO2 Nanoparticles Synthesized with Tilia cordata Applied in Methylene Blue Degradation,” Symmetry (Basel)., vol. 14, no. 11, 2022,
doi: 10.3390/sym14112231.
[3] A. Asdim, K. Manseki, T. Sugiura, and T. Yoshida, “Microwave synthesis of size-controllable SnO2 nanocrystals for dye-sensitized solar cells,” New J. Chem., vol. 38, no. 2, pp. 598–603, 2014,
doi: 10.1039/c3nj01278f.
[4] P. Ren, L. Qi, K. You, and Q. Shi, “Hydrothermal Synthesis of Hierarchical SnO2 Nanostructures for Improved Formaldehyde Gas Sensing,” Nanomaterials, vol. 12, no. 2, 2022,
doi: 10.3390/nano12020228.
[5] D. Murzalinov, E. Dmitriyeva, I. Lebedev, E. A. Bondar, A. I. Fedosimova, and A. Kemelbekova, “The Effect of pH Solution in the Sol-Gel Process on the Structure and Properties of Thin SnO2 Films,” Processes, vol. 10, no. 6, 2022,
doi: 10.3390/pr10061116.
[6] X. Qiao et al., “Synthesis of Monodispersed SnO2 microspheres via solvothermal method,” Procedia Eng., vol. 94, pp. 58–63, 2014,
doi: 10.1016/j.proeng.2013.11.044.
[7] L. C. Nehru and C. Sanjeeviraja, “Rapid synthesis of nanocrystalline SnO2 by a microwave-assisted combustion method,” J. Adv. Ceram., vol. 3, no. 3, pp. 171–176, 2014,
doi: 10.1007/s40145-014-0101-5.
[8] S. Naz et al., “A simple low cost method for synthesis of SnO2 nanoparticles and its characterization,” SN Appl. Sci., vol. 2, no. 5, pp. 1–8, 2020,
doi: 10.1007/s42452-020-2812-2.
[9] M. A. M. Akhir, K. Mohamed, H. L. Lee, and S. A. Rezan, “Synthesis of Tin Oxide Nanostructures Using Hydrothermal Method and Optimization of its Crystal size by Using Statistical Design of Experiment,” Procedia Chem., vol. 19, pp. 993–998, 2016,
doi: 10.1016/j.proche.2016.03.148.
[10] F. Boran, S. Çetinkaya, and M. Şahin, “Effect of surfactant types on the size of tin oxide nanoparticles,” Acta Phys. Pol. A, vol. 132, no. 3, pp. 546–548, 2017,
doi: 10.12693/APhysPolA.132.546.
[11] S. Suthakaran, S. Dhanapandian, N. Krishnakumar, and N. Ponpandian, “Surfactants assisted SnO2 nanoparticles synthesized by a hydrothermal approach and potential applications in water purification and energy conversion,” J. Mater. Sci. Mater. Electron., vol. 30, no. 14, pp. 13174–13190, 2019,
doi: 10.1007/s10854-019-01681-7.
[12] J. Singh, T. Dutta, K. H. Kim, M. Rawat, P. Samddar, and P. Kumar, “‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation,” J. Nanobiotechnology, vol. 16, no. 1, pp. 1–24, 2018,
doi: 10.1186/s12951-018-0408-4.
[13] M. Aminuzzaman, L. P. Ying, W. S. Goh, and A. Watanabe, “Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity,” Bull. Mater. Sci., vol. 41, no. 2, 2018,
doi: 10.1007/s12034-018-1568-4.
[14] M. Yusefi et al., “Green synthesis of fe3o4 nanoparticles stabilized by a garcinia mangostana fruit peel extract for hyperthermia and anticancer activities,” Int. J. Nanomedicine, vol. 16, pp. 2515–2532, 2021,
doi: 10.2147/IJN.S284134.
[15] K. C. Suresh, S. Surendhiran, P. Manoj Kumar, E. Ranjth Kumar, Y. A. S. Khadar, and A. Balamurugan, “Green synthesis of SnO2 nanoparticles using Delonix elata leaf extract: Evaluation of its structural, optical, morphological and photocatalytic properties,” SN Appl. Sci., vol. 2, no. 10, pp. 1–13, 2020, doi: 10.1007/s42452-020-03534-z.
[16] V. S. Nazim, G. M. El-Sayed, S. M. Amer, and A. H. Nadim, “Functionalized SnO2 nanoparticles with gallic acid via green chemical approach for enhanced photocatalytic degradation of citalopram: synthesis, characterization and application to pharmaceutical wastewater treatment,” Environ. Sci. Pollut. Res., vol. 30, no. 2, pp. 4346–4358, 2023, doi: 10.1007/s11356-022-22447-5.
[17] I. Fatimah et al., “Synthesis and control of the morphology of SnO2 nanoparticles via various concentrations of Tinospora cordifolia stem extract and reduction methods,” Arab. J. Chem., vol. 15, no. 4, p. 103738, 2022,
doi: 10.1016/j.arabjc.2022.103738.
[18] B. P. Narasaiah et al., “Green Biosynthesis of Tin Oxide Nanomaterials Mediated by Agro-Waste Cotton Boll Peel Extracts for the Remediation of Environmental Pollutant Dyes,” ACS Omega, vol. 7, no. 18, pp. 15423–15438, 2022,
doi: 10.1021/acsomega.1c07099.
[19] H. Zhu, D. Yang, G. Yu, H. Zhang, and K. Yao, “A simple hydrothermal route for synthesizing SnO2 quantum dots,” Nanotechnology, vol. 17, no. 9, pp. 2386–2389, 2006, doi: 10.1088/0957-4484/17/9/052.
[20] L. Gao, H. Fu, J. Zhu, J. Wang, Y. Chen, and H. Liu, “Synthesis of SnO 2 nanoparticles for formaldehyde detection with high sensitivity and good selectivity,” J. Mater. Res., vol. 35, no. 16, pp. 2208–2217, 2020,
doi: 10.1557/jmr.2020.181.
[21] M. Jarvin, S. S. R. Inbanathan, D. Rani Rosaline, A. Josephine Prabha, and S. A. Martin Britto Dhas, “A study of the structural, morphological, and optical properties of shock treated SnO2 nanoparticles: removal of Victoria blue dye,” Heliyon, vol. 8, no. 6, p. e09653, 2022,
doi: 10.1016/j.heliyon.2022.e09653.
[22] S. Vafaei et al., “Elucidation of the crystal growth characteristics of sno2 nanoaggregates formed by sequential low-temperature sol-gel reaction and freeze drying,” Nanomaterials, vol. 11, no. 7, 2021, doi: 10.3390/nano11071738.
[23] P. Van Viet, C. M. Thi, and L. Van Hieu, “The High Photocatalytic Activity of SnO2 Nanoparticles Synthesized by Hydrothermal Method,” J. Nanomater., vol. 2016, 2016,
doi: 10.1155/2016/4231046.
[24] I. Kononova, V. Moshnikov, and P. Kononov, “SnO2-Based Porous Nanomaterials: Sol-Gel Formation and Gas-Sensing Application,” Gels, vol. 9, no. 4, pp. 1–22, 2023,
doi: 10.3390/gels9040283.
[25] L. Xiong et al., “Review on the Application of SnO2 in Perovskite Solar Cells,” Adv. Funct. Mater., vol. 28, no. 35, 2018,
doi: 10.1002/adfm.201802757.
[26] G. E. Patil, D. D. Kajale, V. B. Gaikwad, and G. H. Jain, “Preparation and characterization of SnO2 nanoparticles by hydrothermal route,” Int. Nano Lett., vol. 2, no. 1, pp. 2–6, 2012,
doi: 10.1186/2228-5326-2-17.
[27] P. Manjula, R. Boppella, and S. V. Manorama, “A facile and green approach for the controlled synthesis of porous SnO 2 nanospheres: Application as an efficient photocatalyst and an excellent gas sensing material,” ACS Appl. Mater. Interfaces, vol. 4, no. 11, pp. 6252–6260, 2012,
doi: 10.1021/am301840s.
[28] N. Rani and N. Jaggi, “Effect of reaction temperature on the structural and electronic properties of stannic oxide nanostructures,” Bull. Mater. Sci., vol. 43, no. 1, 2020,
doi: 10.1007/s12034-020-02141-3.
[29] A. S. Vorokh, “Scherrer formula: estimation of error in determining small nanoparticle size,” Nanosyst. Physics, Chem. Math., vol. 9, no. 3, pp. 364–369, 2018,
doi: 10.17586/2220-8054-2018-9-3-364-369.
[30] M. Wu, W. Zeng, Q. He, and J. Zhang, “Hydrothermal synthesis of SnO2 nanocorals, nanofragments and nanograss and their formaldehyde gas-sensing properties,” Mater. Sci. Semicond. Process., vol. 16, no. 6, pp. 1495–1501, 2013,
doi: 10.1016/j.mssp.2013.04.016.
[31] A. Rohman, M. Rafi, G. Alam, M. Muchtaridi, and A. Windarsih, “Chemical composition and antioxidant studies of underutilized part of mangosteen (Garcinia mangostana L.) fruit,” J. Appl. Pharm. Sci., vol. 9, no. 8, pp. 47–52, 2019, doi: 10.7324/JAPS.2019.90807.
Refbacks
- There are currently no refbacks.