Functionalization Mesoporous Silica using Aminopropyltriethoxysilane (APTES) as Adsorbent for Removal Ni (II) from Aqueous Solution

Ega Hidayani, Andriayani Andriayani, Muhammad Taufik

Abstract

This study successfully synthesized mesoporous silica using the template methyl ester ricinoleate (MS-TMR) and further functionalized the MS-TMR surface with 3-aminopropyltriethoxysilane (APTES). The functionalization of MS-TMR with APTES was achieved through a 48-hour grafting method. For the adsorption experiments, 20 mg of both MS-TMR and MS-TMR-APTES adsorbents were employed to remove Ni(II) from aqueous solutions at a concentration of 30 mg/L and pH 6. The objective was to assess the adsorption capacity and to characterize the synthesized adsorbents. Characterization was conducted using Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD). FTIR analysis revealed that the MS-TMR adsorbent possessed silanol (Si-OH) and siloxane (Si-O-Si) groups. Conversely, the MS-TMR-APTES adsorbent exhibited additional amine (N-H) and C-H groups after the APTES grafting. XRD results indicated that both samples were amorphous. The concentration of Ni(II) ions was determined using Atomic Absorption Spectroscopy (AAS), which facilitated the calculation of removal percentages and adsorption capacities. MS-TMR achieved a mere 3.54% removal of Ni(II) ions, corresponding to an adsorption capacity of 3.21 mg/g. In contrast, MS-TMR-APTES demonstrated significantly enhanced performance, removing 54.23% of Ni(II) ions with an adsorption capacity of 48.81 mg/g. The findings suggest that APTES-functionalized MS-TMR has considerable potential for removing Ni(II) ions and could be explored further for the adsorption of other heavy metal ions.

Keywords

Adsorption; APTES; Mesoporous Silica; Nickel (II)

Full Text:

PDF

References

[1] W. Jia, H. Xu, Q. Yang, S. Ren, and J. Wang, “Synthesis of anionic gemini surfactant-templated mesoporous silica nanoparticles and its adsorption application for Pb2+,” J. Dispers. Sci. Technol., vol. 40, no. 11, pp. 1664–1674, 2019, doi: 10.1080/01932691.2018.1535979.

[2] I. H. Ifijen et al., “The removal of nickel and lead ions from aqueous solutions using green synthesized silica microparticles,” Heliyon, vol. 6, no. 9, 2020, doi: 10.1016/j.heliyon.2020.e04907.

[3] S. Syurin and D. Vinnikov, “Occupational disease predictors in the nickel pyrometallurgical production: a prospective cohort observation,” J. Occup. Med. Toxicol., vol. 17, no. 1, pp. 1–10, 2022, doi: 10.1186/s12995-022-00362-2.

[4] Z. A. Kadhim and A. H. Abbar, “A Novel Bio-electrochemical Cell with Rotating Cylinder Cathode for Cadmium Removal from Simulated Wastewater,” Egypt. J. Chem., vol. 65, no. 13, pp. 769–778, 2022, doi: 10.21608/EJCHEM.2022.149145.6439.

[5] A. Adiningtyas and P. Mulyono, “Kinetika Adsorpsi Nikel (II) dalam Larutan Aqueous dengan Karbon Aktif Arang Tempurung Kelapa,” J. Rekayasa Proses, vol. 10, no. 2, p. 36, 2016, doi: 10.22146/jrekpros.33335.

[6] T. Li et al., “Industrial-scale highly efficient nickel recovery from electroplating wastewater using resin adsorption followed by aeration mixing acid regeneration,” J. Water Process Eng., vol. 58, 2024, doi: 10.1016/j.jwpe.2024.104801.

[7] H. Wu, Y. Xiao, Y. Guo, S. Miao, Q. Chen, and Z. Chen, “Functionalization of SBA-15 mesoporous materials with 2-acetylthiophene for adsorption of Cr(III) ions,” Microporous Mesoporous Mater., vol. 292, p. 109754, 2020, doi: 10.1016/j.micromeso.2019.109754.

[8] J. I. Lachowicz et al., “Adsorption of Cu2+ and Zn2+ on SBA-15 mesoporous silica functionalized with triethylenetetramine chelating agent,” J. Environ. Chem. Eng., vol. 7, no. 4, p. 103205, 2019, doi: 10.1016/j.jece.2019.103205.

[9] Andriayani, Marpongahtun, Y. Muis, J. Pakpahan, and A. Daulay, “Stability of mesoporous silica using ricinoleic methyl ester as a template with the addition of HCl and application of Cd2+ adsorption optimized by Box-Behnken design,” RSC Adv., vol. 13, no. 11, pp. 7329–7338, 2023, doi: 10.1039/d2ra06973c.

[10] Andriayani, Marpongahtun, Suharman, and A. Daulay, “Synthesis of mesoporous silica with ricinoleic methyl ester (Ricinus communis) as a template for adsorption copper (II) with optimizing Box-Behnken design,” Case Stud. Chem. Environ. Eng., vol. 7, p. 100287, 2023, doi: 10.1016/j.cscee.2022.100287.

[11] A. M. Putz et al., “Comparison of structure and adsorption properties of mesoporous silica functionalized with aminopropyl groups by the co-condensation and the post grafting methods,” Materials (Basel)., vol. 14, no. 3, pp. 1–19, 2021,doi: 10.3390/ma14030628.

[12] J. A. S. Costa, R. A. De Jesus, D. O. Santos, J. B. Neris, R. T. Figueiredo, and C. M. Paranhos, “Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review,” J. Environ. Chem. Eng., vol. 9, no. 3, 2021, doi: 10.1016/j.jece.2021.105259.

[13] G. Zhang, T. Wang, Z. Xu, M. Liu, C. Shen, and Q. Meng, “Synthesis of amino-functionalized Ti3C2TxMXene by alkalization-grafting modification for efficient lead adsorption,” Chem. Commun., vol. 56, no. 76, pp. 11283–11286, 2020, doi: 10.1039/d0cc04265j.

[14] S. J. Mousavi, M. Parvini, and M. Ghorbani, “Adsorption of heavy metals (Cu2+ and Zn2+) on novel bifunctional ordered mesoporous silica: Optimization by response surface methodology,” J. Taiwan Inst. Chem. Eng., vol. 84, pp. 123–141, 2018, doi: 10.1016/j.jtice.2018.01.010.

[15] J. Isasi, P. Arévalo, E. Martin, and F. Martín-Hernández, “Preparation and study of silica and APTES–silica-modified NiFe2O4 nanocomposites for removal of Cu2+ and Zn2+ ions from aqueous solutions,” J. Sol-Gel Sci. Technol., vol. 91, no. 3, pp. 596–610, 2019, doi: 10.1007/s10971-019-05067-3.

[16] J. de O. N. Ribeiro et al., “Role of the type of grafting solvent and its removal process on APTES functionalization onto SBA-15 silica for CO2 adsorption,” J. Porous Mater., vol. 26, no. 6, pp. 1581–1591, 2019, doi: 10.1007/s10934-019-00754-6.

[17] D. Flores, C. R. G. C. Marisa R. Almeida, and S. S. B. and C. M. Granadeiro, “Tailoring of Mesoporous Silica-Based Materials for Enhanced Water Pollutants Removal,” Molecules, vol. 28, p. 4038, 2023, doi: https://doi.org/10.3390/molecules28104038.

[18] N. G. Kobylinska, V. G. Kessler, G. A. Seisenbaeva, and O. A. Dudarko, “In situ Functionalized Mesoporous Silicas for Sustainable Remediation Strategies in Removal of Inorganic Pollutants from Contaminated Environmental Water,” ACS Omega, vol. 7, no. 27, pp. 23576–23590, 2022, doi: 10.1021/acsomega.2c02151.

[19] A. Shahbazi, H. Younesi, and A. Badiei, “Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column,” Chem. Eng. J., vol. 168, no. 2, pp. 505–518, 2011, doi: 10.1016/j.cej.2010.11.053.

[20] V. Rizzi, J. Gubitosa, P. Fini, S. Nuzzo, and P. Cosma, “Amino-grafted mesoporous MCM-41 and SBA-15 recyclable adsorbents: Desert-rose-petals-like SBA-15 type as the most efficient to remove azo textile dyes and their mixture from water,” Sustain. Mater. Technol., vol. 26, p. e00231, 2020,doi: 10.1016/j.susmat.2020.e00231.

[21] G. L. Avellaneda, R. Denoyel, and I. Beurroies, “CO2/H2O adsorption and co-adsorption on functionalized and modified mesoporous silicas,” Microporous Mesoporous Mater., vol. 363, 2024, doi: 10.1016/j.micromeso.2023.112801.

[22] Andriayani, H. Nainggolan, M. Taufik, S. Simamora, and N. Sofyan, “The effect concentration of tetraethylorthosilicate and variation HCl 0.1M for synthesis mesoporous silica using oleic acid as template and 3-aminopropyltrimethoxysilane as co-structure directing Agent,” J. Phys. Conf. Ser., vol. 1116, no. 4, pp. 0–8, 2018, doi: 10.1088/1742-6596/1116/4/042006.

[23] A. D. Andriayani, Marpongahtun, Yugia Muis, Jessica Mardela Pakpahan, “Methanol Mass Variation of Mesoporous Silica Synthesis Using Ricinoleic Methyl Ester as a Template,” vol. 57, no. 1, 2022, doi: 10.35741/issn.0258-2724.57.1.55.

[24] Y. D. Ngapa and J. Gago, “Optimizing of Competitive Adsorption Methylene Blue and Methyl Orange using Natural Zeolite from Ende-Flores,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 6, no. 1, p. 39, 2021, doi: 10.20961/jkpk.v6i1.46132.

[25] E. P. Kuncoro, C. Deborah, P. Matondang, M. Fajar, and H. Darmokoesoemo, “Use Of Placuna Placenta Shells As Green Adsorbent For Pb ( II) Ions Sequestration From Aqueous Solution,” vol. 8, no. 3, pp. 310–323, 2023, doi: 10.20961/jkpk.v8i3.80152.

[26] N. Sánchez, J. M. Encinar, S. Nogales, and J. F. González, “Biodiesel production from castor oil by two-step catalytic transesterification: Optimization of the process and economic assessment,” Catalysts, vol. 9, no. 10, 2019, doi: 10.3390/catal9100864.

[27] M. G. Sohini Mukherjee, “Studies on Performance Evaluation of a Green Plasticizer Made by Enzymatic Esterification of Furfuryl Alcohol and Castor Oil Fatty Acid,” Carbohydr. Polym., 2016, doi: https://doi.org/10.1016/j.carbpol.2016.10.075.

[28] C. L. Palconite et al., “Optimization and characterization of bio-oil produced from Ricinus communis seeds via ultrasonic-assisted solvent extraction through response surface methodology,” Sustain. Environ. Res., vol. 28, no. 6, pp. 444–453, 2018, doi: 10.1016/j.serj.2018.07.006.

[29] N. D. Wela and A. D. Wela, “Study of Reaction Conditions for the Synthesis of Methyl Oleic from Used Cooking Oil,” Akta Kim. Indones., vol. 6, no. 1, p. 41, 2021, doi: 10.12962/j25493736.v6i1.8106.

[30] A. Andriayani, M. Marpongahtun, S. Suharman, and A. Daulay, “Application mesoporous silica with methyl ester ricinoleate castor oil (Ricinus communis) as template in absorbent of Cd ions,” in AIP Conference Proceedings, 2023, vol. 2626, no. 1.

[31] B. M. Estevão, I. Miletto, N. Hioka, L. Marchese, and E. Gianotti, “Mesoporous Silica Nanoparticles Functionalized with Amino Groups for Biomedical Applications,” ChemistryOpen, vol. 10, no. 12, pp. 1251–1259, 2021, doi: 10.1002/open.202100227.

[32] R. K. Elango, K. Sathiasivan, C. Muthukumaran, V. Thangavelu, M. Rajesh, and K. Tamilarasan, “Transesterification of castor oil for biodiesel production: Process optimization and characterization,” Microchem. J., vol. 145, pp. 1162–1168, 2019, doi: 10.1016/j.microc.2018.12.039.

[33] A. M. A. Attia, M. Nour, A. I. El-Seesy, and S. A. Nada, “The effect of castor oil methyl ester blending ratio on the environmental and the combustion characteristics of diesel engine under standard testing conditions,” Sustain. Energy Technol. Assessments, vol. 42, 2020, doi: 10.1016/j.seta.2020.100843.

[34] S. Ghotekar, S. Pansambal, K. Pagar, O. Pardeshi, and R. Oza, “Synthesis of CeVO 4 nanoparticles using sol-gel auto combustion method and their antifungal activity,” vol. 3, no. 2, pp. 189–196, 2018, doi: 10.22036/ncr.2018.02.008.

[35] J. J. Gutiérrez Moreno, K. Pan, Y. Wang, and W. Li, “Computational Study of APTES Surface Functionalization of Diatom-like Amorphous SiO2 Surfaces for Heavy Metal Adsorption,” Langmuir, vol. 36, no. 20, pp. 5680–5689, 2020, doi: 10.1021/acs.langmuir.9b03755.

[36] I. Puspita Sari and M. Bachri Amran, “Sintesis dan Karakterisasi SiO2@APTES-IIP Sebagai Material Fungsional Penjerap Ion Kadmium(II),” IJCA (Indonesian J. Chem. Anal., vol. 4, no. 1, pp. 18–29, 2021, doi: 10.20885/ijca.vol4.iss1.art3.

[37] J. M. Kolle and A. Sayari, “Dry gel grafting of mesoporous silica: Application to amine-based CO2 adsorbents,” Microporous Mesoporous Mater., vol. 343, no. August, p. 112195, 2022, doi: 10.1016/j.micromeso.2022.112195.

[38] R. Singhon, C. Ii, N. Ii, F. Colloidal, and S. Particles, “Adsorption of Cu ( II ) and Ni ( II ) Ions on Functionalized Colloidal Silica Particles Model Studies for Wastewater To cite this version : Adsorption of Cu ( II ) and Ni ( II ) Ions on Functionalized Colloidal Silica Particles Model Studies for Wastewate,” 2017.

[39] S. Xie et al., “Synthesis of polyaniline-titania nanotube arrays hybrid composite via self-assembling and graft polymerization for supercapacitor application,” Electrochim. Acta, vol. 120, pp. 408–415, 2014, doi: 10.1016/j.electacta.2013.12.067.

[40] R. Kishor and A. K. Ghoshal, “APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption,” Chem. Eng. J., vol. 262, pp. 882–890, 2015, doi: 10.1016/j.cej.2014.10.039.

[41] S. Wongsakulphasatch, W. Kiatkittipong, J. Saiswat, B. Oonkhanond, A. Striolo, and S. Assabumrungrat, “The adsorption aspect of Cu2 + and Zn2 + on MCM-41 and SDS-modified MCM-41,” Inorg. Chem. Commun., vol. 46, pp. 301–304, 2014, doi: 10.1016/j.inoche.2014.06.029.

[42] B. Dziejarski, J. Serafin, K. Andersson, and R. Krzyżyńska, “CO2 capture materials: a review of current trends and future challenges,” Mater. Today Sustain., vol. 24, 2023, doi: 10.1016/j.mtsust.2023.100483.

[43] M. Sypabekova, A. Hagemann, D. Rho, and S. Kim, “Review: 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications,” Biosensors, vol. 13, no. 1, 2023, doi: 10.3390/bios13010036.

[44] M. D. Pratiwi, P. Taba, and Y. Hala, “Pemanfaatan Silika Mesopori MCM-48 Termodifikasi 3-Aminopropiltrimetoksisilan Sebagai Adsorben Logam Berat Ni (II),” no. 2, pp. 1–8, 2015.

[45] V. R. Dugyala, J. S. Muthukuru, E. Mani, and M. G. Basavaraj, “Role of electrostatic interactions in the adsorption kinetics of nanoparticles at fluid-fluid interfaces,” Phys. Chem. Chem. Phys., vol. 18, no. 7, pp. 5499–5508, 2016, doi: 10.1039/c5cp05959c.

[46] P. N. E. Diagboya and E. D. Dikio, “Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment,” Microporous Mesoporous Mater., vol. 266, no. March, pp. 252–267, 2018, doi: 10.1016/j.micromeso.2018.03.008.

[47] R. Narayan, U. Y. Nayak, A. M. Raichur, and S. Garg, “Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances,” Pharmaceutics, vol. 10, no. 3, pp. 1–49, 2018, doi: 10.3390/pharmaceutics10030118.

[48] M. R. Awual et al., “Ligand based sustainable composite material for sensitive nickel(II) capturing in aqueous media,” J. Environ. Chem. Eng., vol. 8, no. 1, 2020, doi: 10.1016/j.jece.2019.103591.

[49] R. Garg et al., “Biosynthesized silica-based zinc oxide nanocomposites for the sequestration of heavy metal ions from aqueous solutions,” J. King Saud Univ. - Sci., vol. 34, no. 4, p. 101996, 2022, doi: 10.1016/j.jksus.2022.101996.

[50] M. E. Awual et al., “Ligand imprinted composite adsorbent for effective Ni (II) ion monitoring and removal from contaminated water,” J. Ind. Eng. Chem., vol. 131, no. November 2023, pp. 585–592, 2024, doi: 10.1016/j.jiec.2023.10.062.

Refbacks

  • There are currently no refbacks.