Mesoporous Carbon in the Global World

Maria Ulfa

Abstract

This review provided information about the development of the synthesis aspect, preparation and application of mesoporous carbon in the global world based on research phenomenon on 100 mesoporous carbon papers published by Elsevier, ACS dan Springer during 25 year. Review results showed that researchers began to leave sucrose and switch to non-sucrose as carbon precursor. Researchers used sucrose about 90% in 1995-2000 and in 2010-2015 decrease to become 40%. Otherwise those using non-sucrose in 1995-2000 only 10%, recently increase to 60%. For the method used to synthesis the mesoporous carbon researchers prefer used soft template (about 75 %) before year 2000 and hard template (about 60%) in 2000-2010, but now the method used with soft templates, hard templates and combinations of both are balanced. From year 1995 until 2015 total researchers used sucrose as carbon precursor about 50% and researchers about 40% using hard template method, 35% using soft template method and the others using combination both of them. Structure form of the amorphous carbons are grown, from wormholes, cubic, until hexagonal, and modification to these fours forms. Physical properties such as pore size, surface area, and structural order were developed for better performance year to year. Mesoporous carbon application up to 60% were used in the fuel production and refineries, but the other using on the communication tenhnologies and medical areas. All of the mesoporous carbon in the global world shows that mesoporous carbon is a future material which has a great opportunity to develop especially in Indonesia and other developing countries. Indonesia have  various natural resources as a carbon source, so in the future Indonesia are expected as one of the countries of mesoporous carbon supplier

 

Keywords

mesoporous carbon; precursor; method; structure; aplication

Full Text:

PDF

References

Kyotani, T., Nagai, T., Inoue, S., and Tomita, A., Chem, Mater, vol. 9, pp. 609–615, 1997.

R. Ryoo, J. Phys. Chem. Solids, vol. 13, no. 5, pp. 734–743, 1999.

R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater., vol. 13, no. 9, pp. 677–681, 2001.

S. H. Joo, S. Jun, and R. Ryoo, Microporous Mesoporous Mater., 2001.

R. Ryoo and S. D. Kirik, Microporous Mesoporous Mater.vol. 48, pp. 299–302, 2003.

D. J. Kim, H. I. Lee, J. E. Yie, S. J. Kim, and J. M. Kim, Carbon N. Y., vol. 43, no. 9, pp. 1868–1873, 2005.

H. Zhou, S. Zhu, I. Honma, and K. Seki, Chem. Phys. Lett., 2004.

P. a. Bazuła, A.-H. Lu, J.-J. Nitz, and F. Schüth, Microporous Mesoporous Mater., vol. 108, no. 1–3, pp. 266–275, 2008.

C. Y. J. Fan, B. T. F. Zhang, and D. Zhao, Carbon, vol. 20, no. 29925309, pp. 45–48, 2003.

G. Liu, S. Zheng, D. Yin, Z. Xu, J. Fan, and F. Jiang, J. Colloid Interface Sci., vol. 302, no. 1, pp. 47–53, 2006.

L. A. Solovyov, A. N. Shmakov, V. I. Zaikovskii, S. H. Joo, and R. Ryoo, vol. 40, pp. 2477–2481, 2002.

X. Peng, D. Cao, and W. Wang, Chem. Eng. Sci., vol. 66, no. 10, pp. 2266–2276, 2011.

S. Inagaki, Y. Yokoo, T. Miki, and Y. Kubota, Microporous Mesoporous Mater., vol. 179, pp. 136–143, 2013.

N. Farzin Nejad, E. Shams, M. K. Amini, and J. C. Bennett, “239-246 Microporous Mesoporous Mater., 2013.

Q. Huo, Synthetic Chemistry of the Inorganic Ordered Porous Materials. Elsevier B.V., 2011.

A. Vinu, M. Miyahara, and K. Ariga, Microporous Mesoporous Mater., vol. 113, no. 1–3, pp. 575–582, 2008.

J. Roggenbuck, T. Waitz, and M. Tiemann, Microporous Mesoporous Mater., vol. 113, no. 1–3, pp. 575–582, 2008.

J. Jin, N. Nishiyama, Y. Egashira, and K. Ueyama, Microporous Mesoporous Mater., vol. 118, no. 1–3, pp. 218–223, 2009.

A.-H. Lu, W.-C. Li, W. Schmidt, and F. Schüth, Microporous Mesoporous Mater., vol.80, pp. 117–128, 2005.

C. N. Mbileni, F. F. Prinsloo, M. J. Witcomb, and N. J. Coville, Carbon N. Y., vol. 44, no. 8, pp. 1476–1483, 2006.

Y. Yan, J. Wei, F. Zhang, Y. Meng, B. Tu, and D. Zhao, Microporous Mesoporous Mater., vol. 113, no. 1–3, pp. 305–314, 2008.

L. Barthe, M. Hemati, K. Philippot, and B. Chaudret, Chem. Eng. Res. Des., vol. 86, no. 4, pp. 349–358, 2008.

M. Sobiesiak, “Thermal properties of nanoporous carbons prepared by a template method using different polymeric and organic precursors,” Xinxing Tan Cailiao/New Carbon Mater., vol. 27, no. 5, pp. 337–343, 2012.

A. Zhou, X. Ma, and C. Song, Appl. Catal. B Environ., vol. 87, no. 3–4, pp. 190–199, 2009.

J. Feng, Microporous Mesoporous Mater., vol. 174, pp. 62–66, 2013.

J. H. Kim, S. Y. Ha, S. Y. Nam, J. W. Rhim, K. H. Baek, and Y. M. Lee, CJ. Memb. Sci., vol. 186, no. 1, pp. 97–107, 2001.

G. Tzvetkov, B. Tsyntsarski, and K. Balashev, Micron, vol. 89, pp. 34–42, 2016.

J. B. Xu, T. S. Zhao, and L. Zeng, vol. 7, pp. 3–9, 2012.

M. Ignat, M. Mertens, E. Popovici, E. F. Vansant, and P. Cool, Carbon, p. 10712, 2005.

P. Arab, A. Badiei, A. Koolivand, and G. M. Ziarani, Chinese J. Catal., vol. 32, no. 1, pp. 258–263, 2011.

M. Jahanbakhshi, Mater. Sci. Eng. C, vol. 70, pp. 544–551, 2017.

Z. Luan and J. A. Fournier, Microporous Mesoporous Mater., vol. 79, no. 1–3, pp. 235–240, 2005.

H. M. A. El, S. A. Younis, H. R. Ali, and T. Zaki, Microporous Mesoporous Mater., vol. 241, pp. 210–217, 2017.

Y. P. Lin, H. P. Lin, D. W. Chen, H. Y. Liu, H. Teng, and C. Y. Tang, Mater. Chem. Phys., vol. 90, no. 2–3, pp. 339–343, 2005.

M. Ulfa, W. Trisunaryanti, I. I. Falah, and I. Kartini, Indones. J. Chem., vol. 16, no. 3, pp. 239–242, 2016.

M. Ulfa, W. Trisunaryanti, I. I. Falah, and I. Kartini, Chem.Tech., vol. 4, no. V, pp. 1–7, 2014.

M. Ulfa, W. Trisunaryanti, I. I. Falah, and I. Kartini, Chem. Eng. Res. vol. 7, no. 3, pp. 849–856, 2014.

M. Ulfa, W. Trisunaryanti, I. Falah, and I. Kartini, Appl. Chem, vol. 9, no. 9, p. 9555, 2016.

M. Ulfa, W. Trisunaryanti, I. I. Falah, and I. Kartini, J. Chem. Eng. Chem. Res, vol. 1, no. 1, pp. 1–5, 2014.

M. Ulfa, W. Trisunaryanti, I. I. Falah, and I. Kartini, Appl. Chem, vol. 8, no. 8, pp. 57–63, 2015.

M. Ulfa, J. Kim. Ris., vol. 1, no. 2, pp. 103–110, 2016.

V. Guknebauta, M. Maaloumb, M. Bonhiver, R. Wept, K. Leonarda, and J. K. H. Hiirber, Carbon, vol. 69, pp. 129–137, 1997.

H. Darmstadt, C. Roy, S. Kaliaguine, S. . Choi, and R. Ryoo, Carbon N. Y., vol. 40, no. 14, pp. 2673–2683, 2002.

B. Pramanick, A. Salazar, S. O. Martinez-chapa, and M. J. Madou, Carbon N. Y., vol. 113, pp. 252–259, 2017.

J. Yang J. Colloid Interface Sci., vol. 342, no. 2, pp. 579–585, 2010.

S. Sciencedirect, K. Herein, A. Organics, and Q. Autosorb, “Microporous and Mesoporous Materials vol. i, pp. 71–74, 2012.

A. Kyotani, T., Nagai, T., Inoue, S., and Tomita, Carbon,p. 20130727, 2013.

J. B. Koo, N. Jiang, and S. J. Catal., vol. 276, no. 2, pp. 327–334, 2010.

F. Su, J. Zeng, Y. Yu, L. Lv, J. Y. Lee, and X. S. Zhao, Carbon, vol. 43, pp. 2366–2373, 2005.

M. Beretta, thesis, vol. 40766, pp. 1–214, 2009.

M. Jaroniec, J. Gorka, J. Choma, and A. Zawislak, Carbon N. Y., vol. 47, no. 13, pp. 3034–3040, 2009.

Y. Li, J. Zhong, X. Z. Yang, G. J. Lan, H. D. Tang, and H. Z. Liu, “Simple synthesis of semi-graphitized ordered mesoporous carbons with tunable pore sizes,” Xinxing Tan Cailiao/New Carbon Mater., vol. 26, no. 2, pp. 123–129, 2011.

J. Górka, C. Fenning, and M. Jaroniec, Colloids Surfaces A Physicochem. Eng. Asp., vol. 352, no. 1–3, pp. 113–117, 2009.

P. Li, Y. Song, Q. Guo, J. Shi, and L. Liu, Mater. Lett., vol. 65, no. 14, pp. 2130–2132, 2011.

C. Cai, Z. Zhang, and H. Zhang, J. Hazard. Mater., vol. 313, pp. 209–218, 2016.

S. Karthikeyan, M. P. Pachamuthu, M. A. Isaacs, S. Kumar, A. F. Lee, and G. Sekaran, "Applied Catal. B, Environ., vol. 199, pp. 323–330, 2016.

S. G. De Avila, L. Carlos, C. Silva, and J. R. Matos, “Microporous and Mesoporous Materials, vol. 234, pp. 277–286, 2016.

D. Srinivas and P. Ratnasamy, Microporous Mesoporous Mater., vol. 105, no. 1–2, pp. 170–180, 2007.

H. M. A. Hunter and P. A. Wright, Microporous Mesoporous Mater., vol. 43, no. 3, pp. 361–373, 2001.

A. Y. Khodakov, V. L. Zholobenko, R. Bechara, and D. Durand, Microporous Mesoporous Mater., vol. 79, no. 1–3, pp. 29–39, 2005.

L. Li, H. Song, and X. Chen, Microporous Mesoporous Mater., 2006.

A. Prabhu, A. Al Shoaibi, and C. Srinivasakannan, Mater. Lett., vol. 136, pp. 81–84, 2014.

R. Wüstneck and J. Krägel, ” Stud. Interface Sci., vol. 7, no. C, pp. 433–490, 1998.

K. K. Han, Y. Zhou, W. G. Lin, and J. H. Zhu, “Microporous and Mesoporous Materials vol. 169, pp. 112–119, 2013.

X. Wang, P. Liu, and Y. Tian, J. Solid State Chem., vol. 184, no. 6, pp. 1571–1575, 2011.

R. Guo, J. Guo, F. Yu, and D. D. Gang, Microporous Mesoporous Mater., vol. 175, pp. 141–146, 2013.

J. C. Vartuli, T. Kresge, W. J, and S. B. Mccullen, Microporous Mesoporous Mater., vol. 175, pp. 141–146, 2013.

C. Felser, K. Landfester, J. Long, C. Mellot-draznieks, and D. Worsley, 207890, 2017.

C. Song and X. Ma, Microporous Mesoporous Mater., vol. 175, pp. 141–146, 2013.

A. E. C. Palmqvist, Curr. Opin. Colloid Interface Sci., vol. 8, pp. 145–155, 2003.

V. Berbenni and A. Marini, Mater. Res. Bull., vol. 38, no. 14, pp. 1859–1866, 2003.

D. D. Do, C. Nguyen, and H. D. Do, Colloids Surfaces A Physicochem. Eng. Asp., vol. 187–188, pp. 51–71, 2001.

Y. K. Kim, K. P. Rajesh, and J.-S. Yu, J. Hazard. Mater., vol. 260, pp. 350–7, 2013.

Y. R. J. Thomas, M. M. Bruno, and H. R. Corti, Microporous Mesoporous Mater., vol. 155, pp. 47–55, 2012.

I. Suarez-Martinez and N. A. Marks, Carbon N. Y., vol. 50, no. 15, pp. 5441–5449, 2012.

S. Deng, W. Chu, H. Xu, L. Shi, and L. Huang, J. Nat. Gas Chem., vol. 17, no. 4, pp. 369–373, 2008.

R. K. Iler, “Description of MCM-41 Structure,” Chem. Silica Solubility, Polym. Colloid Surf. Prop. Biochem. Silica, pp. 139–177, 1979.

J. B. Mcmonagle, M. Seay, and J. B. Moffat, Microporous Mesoporous Mater., vol. 175, pp. 141–146, 2013.

X. Wu Electrochim. Acta, vol. 89, pp. 400–406, 2013.

B. Lin, G. Yang, B. Yang, and Y. Zhao, Appl. Catal. B Environ., vol. 198, pp. 276–285, 2016.

L. H. Lin and K. M. Chen, Colloids Surfaces A Physicochem. Eng. Asp., vol. 272, no. 1–2, pp. 8–14, 2006.

P. Application and A. Of, “6. t h e o r y and practical application aspects of surfactants.”

V. I. Uricanu, M. H. G. Duits, D. Filip, R. M. F. Nelissen, and W. G. M. Agterof, J. Colloid Interface Sci., vol. 298, no. 2, pp. 920–934, 2006.

E. Leontidis, Curr. Opin. Colloid Interface Sci., vol. 7, no. 1–2, pp. 81–91, 2002.

A. Vinu, Mater. Res. Bull., vol. 38, no. 14, pp. 1859–1866, 2003.

J. E. Hampsey, Q. Hu, Z. Wu, L. Rice, J. Pang, and Y. Lu, Carbon N. Y., vol. 43, no. 14, pp. 2977–2982, 2005.

G. Goglio, D. Foy, and G. Demazeau, Mater. Sci. Eng. R Reports, vol. 58, no. 6, pp. 195–227, 2008.

J. Lin, B. Mishra, J. J. Moore, and W. D. Sproul, Surf. Coatings Technol., vol. 202, no. 14, pp. 3272–3283, 2008.

J. Widany, F. Weich, T. Köhler, D. Porezag, and T. Frauenheim, Diam. Relat. Mater., vol. 5, no. 9, pp. 1031–1041, 1996.

D. C. Calabro, E. W. Valyocsik, and F. X. Ryan, “Microporous Mater., vol. 7, no. 5, pp. 243–259, 1996.

G. Chandrasekar, W. J. Son, and W. S. Ahn, J. Porous Mater., 2009.

L. Xiang, S. Royer, H. Zhang, J. M. Tatibouët, J. Barrault, and S. Valange, J. Hazard. Mater., vol. 172, no. 2–3, pp. 1175–1184, 2009.

M. Santiago, J. C. Groen, and J. Pérez-ramírez, “Carbon vol. 257, pp. 152–162, 2008.

H. Wang, K. Sun, A. Li, W. Wang, and P. Chui, Powder Technol., vol. 209, no. 1–3, pp. 9–14, 2011.

I. Ruthven, A. Processes, A. Society, and T. Materials, “Porosity in Carbons : Modeling,” 1995.

P. Jana, V. Fierro, and A. Celzard, ,” Ind. Crops Prod., vol. 89, pp. 498–506, 2016.

R. Comesaña, M. A. Gómez, M. A. Álvarez, and P. Eguía,Thermochim. Acta, vol. 547, pp. 13–21, 2012.

C. Song, Carbon, vol. 86, pp. 211–263, 2003.

J. Bu, G. Loh, C. G. Gwie, S. Dewiyanti, M. Tasrif, and A. Borgna, Carbon, vol. 166, pp. 207–217, 2011.

J. Wen, X. Han, H. Lin, Y. Zheng, and W. Chu, Chem. Eng. J., vol. 164, no. 1, pp. 29–36, 2010.

J. Ramı and P. Castillo-villalo, Carbon, vol. 130, pp. 320–326, 2008.

Refbacks

  • There are currently no refbacks.