Impacts of The POGIL Learning Model Combined With a SETS Approach on Chemical Literacy and Science Process Skills in The Context of Buffer Solutions

Putri Anggun Puspitasari, Budi Hastuti, Bakti Mulyani

Abstract

This study evaluates the impact of the Process Oriented Guided Inquiry Learning (POGIL) model combined with a Science-Technology-Society-Environment (SETS) approach on chemical literacy and science process skills within buffer solutions. Employing a quasi-experimental design with a nonequivalent control group, the research involved 71 students divided into experimental and control groups. Cluster random sampling was utilized for participant selection, and Multivariate Analysis of Variance (MANOVA) was applied to test the hypotheses. The findings reveal a significant effect of the POGIL learning model integrated with a SETS approach on simultaneously enhancing students' chemical literacy and science process skills. This outcome is substantiated by the MANOVA results, which indicate a significance level of 0.000, falling below the threshold of 0.05, thereby leading to the rejection of the null hypothesis (H0). Notably, the experimental group demonstrated significant improvements compared to the control group. Chemical literacy in the experimental group reached 79.90%, significantly higher than the 62.53% observed in the control group. Additionally, the N-gain scores for the experimental and control groups were 0.70 and 0.32, respectively, categorized as high and medium. Furthermore, the percentages of science process skills were 91.61% in the experimental group and 82.37% in the control group, both in the very good category. These results underscore the effectiveness of combining POGIL with a SETS approach in elevating chemical literacy and science process skills, suggesting this method is a potent educational tool in chemical education.

Keywords

POGIL;SETS; Chemical Literacy; Science Process Skills; Buffer Solution

Full Text:

PDF

References

[1]. K. Schwab, The fourth industrial revolution, World Economic Forum, 2016.

[2]. A. A. Shahroom and N. Hussin, "Industrial Revolution 4.0 and education," International Journal of Academic Research in Business and Social Sciences, vol. 8, no. 9, pp. 314- 319, 2018,
doi: 10.6007/IJARBSS/v8-i9/4593.

[3]. Mega V, Sri Yamtinah, and Maria Ulfa., “Analisis Muatan Literasi Kimia pada Buku Teks Kimia SMA kelas XI di Surakarta,” Jurnal Pendidikan Kimia, Vol. 10 No. 2, 196-204, 2021

[4]. Imansari, M., Sudarmin, & Sumarni, W., “Analisis Literasi Kimia Peserta Didik Melalui Pembelajaran Inkuiri Terbimbing Bermuatan Etnosains,” Jurnal Inovasi Pendidikan Kimia, vol. 12, no. 2, pp. 2201–2211, 2018,
doi: 10.15294/jipk.v12i2.15480.

[5]. OECD. (2019). PISA 2018 Insights and Interpretations. OECD Publishing: Paris.

[6]. Rasmiwetti, Nitasari F dan Anwar L., “Pengembangan LKPD Berbasis Literasi Sains dengan Strategi Means-Ends Analysis (MEA) pada Pokok Bahasan Asam dan Basa,” Jurnal Pijar MIPA, vol. 14, no. 2, pp. 488-492, 2020,
doi: 10.29303/jpm.v15i5.2138.

[7]. U. Oktavianti, A. M. Noer and L. Anwar S, "Development of students worksheet chemical bond based on learning cycle 7E," EduChemia (Jurnal Kimia dan Pendidikan), vol. 5, no. 1, pp. 51-59, 2020,
doi: 10.30870/educhemia.v5i1.6732.

[8]. Khairi, M. A., dan Jasim Ikhsan, “Pengembangan Modul Elektronik Berbasis Inkuiri Terbimbing dan Pengaruhnya Terhadap Literasi Kimia Siswa,” Jurnal Kimia dan Pendidikan Kimia, vol.7, no. 2, 181-193, 2022,
doi: 10.20961/jkpk.v7i2.62319.

[9]. D. G. Ramadhani, S. Yamtinah, S. Saputro, Sarwanto, and M. Masykuri, "From screen to bench: unpacking the shifts in chemistry learning experiences during the COVID-19 transition," Chemistry Teacher International, vol. 6, no. 1, pp. 19-33, 2024.
doi: 10.1515/cti-2023-0039

[10]. Novita, N., Mellyzar, M., & Herizal, H. “Asesmen Nasional (AN): Pengetahuan dan persepsi calon guru,” JISIP (Jurnal Ilmu Sosial Dan Pendidikan), vol. 5, no. 1, pp. 172–179, 2021,
doi: 10.58258/jisip.v5i1.1568.

[11]. Lepiyanto, A., “Analisis Keterampilan Proses Sains pada Pembelajaran Berbasis Praktikum,” BIOEDUKASI (Jurnal Pendidikan Biologi), vol. 5, no. 2, pp. 156–161, 2017,
doi: 10.24127/bioedukasi.v5i2.795.

[12]. Karso, Materi Pokok-pokok Dasar Pendidikan MIPA. Jakarta: Universitas Terbuka, 1993

[13]. Widayanti, E. Y., “Penguasaan Keterampilan Proses Sains Dasar Siswa Madrasah Ibtidaiyah (studi pada Madrasah Mitra STAIN Ponorogo),” Kodifikasia, vol. 9, no. 1, pp. 171-198, 2015,
doi: 10.21154/kodifikasia.v9i1.465.

[14]. Muslim, K., Tapilouw, F.S., “Pengaruh Model Inkuiri Ilmiah Terhadap Peningkatan Keterampilan Proses Sains Siswa SMP pada Materi kalor dalam Kehidupan,” Edusains, vol. VII , no. 1, pp. 88-96, 1979-7281, 2015,
doi: 10.15408/es.v7i1.1508.

[15]. Sona Elisabeth, Dasna, I.W., & Susilo, H. (2016). Pemberdayaan Keterampilan Proses Sains Melalui POGIL (Process Oriented Guided Inquiry Learning). Prosiding Semnas Pendidikan IPA Pascasarjana UM, vol.1, no. 2, pp. 191-201, 2016

[16]. Mellyzar, Lukman Isna dan Busyraturrahmi, “Pengaruh Strategi Process Oriented Guided Inquiry Learning (POGIL) Terhadap Kemampuan Proses Sains dan Literasi Kimia,” Jambura Journal of Educational Chemistry, vol. 4, no. 2, pp. 70-76, 2022, doi: 10.34312/jjec.v4i2.15338.

[17]. Ningsih, et.al., “Pengaruh Metode POGIL (Process Oriented Guided Inquiry Learning) Terhadap Keterampilan Proses Sains Siswa Pada materi Suhu dan Kalor Kelas X SMA,” Prosiding Seminar Nasional Fisika (E-Journal) vol. IV, 2015

[18]. Yusro, “Pengembangan Perangkat Pembelajaran Fisika Berbasis SETS untuk Meningkatkan Kemampuan Berpikir Kreatif Siswa,” Jurnal Pendidikan Fisika dan Keilmuan, vol. 2, no. 2,pp. 61-66, 2015,
doi: 10.25273/jpfk.v1i2.13.

[19]. Yuliastini, Ika Budi, dkk., “POGIL berkonteks Socio Scientific Issue (SSI) dan Literasi Sains Siswa SMK,” Jurnal UM, vol. 1, 2016

[20]. Sugiyono, Metode Penliian Kuantitatif Kualikatif dan R&D. Bandung: Alfabeta, 2014

[21]. Ghozali, Imam, Aplikas Analisis Multivariate dengan Program SPSS. Semarang: UNDIP, 2009

[22]. Bahriah, E. S., Suryaningsih, S., & Yuniati, D., “Pembelajaran Berbasis Proyek pada Konsep Koloid untuk Pengembangan Keterampilan Proses Sains Siswa,” Jurnal Tadris Kimiya, vol. 2, no. 2, pp. 145–152, 2017,
doi: 10.15575/jtk.v2i2.1883.

[23]. Zamista, Adelia Alfama dkk., “Pengaruh Model Pembelajaran Process Oriented Guided Inquiry Learning Terhadap Keterampilan Proses Sains Dan Kemampuan Kognitif Siswa Pada Mata Pelajaran Fisika,” Jurnal EDUSAINS, vol. 7, no. 2, pp. 191-201, 2015,
doi: 10.15408/es.v7i2.1815.

[24]. Elsa, “Pengaruh Model POGIL terhadap Kemampuan Literasi Sains,” Skripsi. Jakarta: UIN Syarif Hidayatullah, 2021

[25]. Shwartz, Y., Ben-Zvi, R., & Hofstein, A., “The Use of Scientific Literacy Taxonomy for Assessing the Development of Chemical Literacy among High-school Students,” Chemistry Education Research and Practice, vol. 7, no. 4, pp. 203–225, 2006,
doi: 10.1039/B6RP90011A.

[26]. Rahma, S. Z., Mulyani, S., & Masykuri, M., “Pengembangan Modul Berbasis SETS (Science, Environment, Technology, Society) Terintegrasi Nilai Islam di SMAI Surabaya pada Materi Ikatan Kimia,” JP (Jurnal Pendidikan): Teori dan Praktik, vol. 2, no. 1, pp. 70-76, 2017,
doi: 10.26740/jp.v2n1.p70-76.

[27]. Chanapimuk, K., Sawangmek, S., & Nangngam P., “Using Science, Technology, Society andociety andonment Approach to Improve the Scientific in Plant Growth and Development,” Journal of Science Learning, vol. 2, no. 1, 2018,
doi: 10.17509/jsl.v2i1.11997.

[28]. Zahra, Widya, and Deden, “SETS Learning (Science, Environment, Technology, Society): The Effect on Science Process Skills,” Indonesian Journal of Science and Mathematics Education, Vol. 02. No. 3, 320-327, 2019, doi: 10.24042/ijsme.v2i3.4357.

[29]. Adilah, J., Martini. (2022), “Keterampilan Proses Sains dalam Pembelajaran Tatap Muka Terbatas pada Siswa SMP,” Pensa E-Jurnal: Pendidikan Sains, vol. 10, no. 3, pp. 443-448, 2022

[30]. Kastawaningtyas, A., & M., “Peningkatan keterampilan proses sains siswa melalui model experiential learning pada materi pencemaran lingkungan,” Jurnal Penelitian Pendidikan IPA, vol. 2, no. 2, pp. 45–52, 2017,
doi: 10.26740/jppipa.v2n2.p45-52.

[31]. A. Luehmann, "Identity development as a lens to science teacher preparation," Science Education,” vol. 91, no. 5, pp. 822-839, 2007,
doi: 10.1002/sce.20209.

[32]. K. Wong, S. Russo, and J. McDowall, "Understanding early childhood student teachers’ acceptance and use of interactive whiteboard," Campus-Wide Information Systems, vol. 30, no. 1, pp. 4-16, 2012,
doi: 10.1108/10650741311288788.

[33]. C. Liu, B. Jack, and H. Chiu, "Taiwan elementary teachers’ views of science teaching self-efficacy and outcome expectations," International Journal of Science and Mathematics Education, vol. 6, no. 1, pp. 19-35, 2007,
doi: 10.1007/s10763-006-9065-4.

[34]. S. Abell, M. Rogers, D. Hanuscin, M. Lee, and M. Gagnon, "Preparing the next generation of science teacher educators: A model for developing PCK for teaching science teachers," Journal of Science Teacher Education, vol. 20, no. 1, pp. 77-93, 2009,
doi: 10.1007/s10972-008-9115-6.

Refbacks

  • There are currently no refbacks.