Biosynthesis of Poly Acrylic Acid (PAA) Modified Silver Nanoparticles, Using Basil Leaf Extract (Ocimum basilicum L.) for Heavy Metal Detection

Yussi Pratiwi, Yusmaniar Yusmaniar, Nurhasanah Nurhasanah


This study focused on characterizing synthesized silver nanoparticles (AgNPs) and evaluating their efficacy as colorimetric detectors for heavy metal ions. The synthesis employed a bottom-up approach, using AgNO3 as a precursor, reduced by secondary metabolites in basil leaf extract, enhanced with Polyacrylic acid (PAA). Basil leaves were chosen for their rich content of secondary metabolites like phytosterols, alkaloids, phenolic compounds, tannins, lignin, starch, saponins, flavonoids, terpenoids, and anthraquinones, crucial in reducing silver ions. Incorporating basil leaf extract as a bioreactor and adding PAA to increase stability and selectivity towards metal ions are innovative aspects of this research. The optimal AgNP composition was attained with a 0.7 mL basil leaf extract to 10 mL AgNO3 ratio plus 2% PAA. The AgNP formation was indicated by a color change from yellow to brownish, with a Surface Plasmon Resonance (SPR) peak at 418 nm. Characterization via Fourier Transform Infrared Spectroscopy (FTIR) revealed hydroxyl (-OH) and carbonyl (C=O) functional groups aiding in silver ion reduction. Particle Size Analysis (PSA) showed AgNPs of 72.3 nm size, with a polydispersity index of 0.504. Colorimetric detection tests were conducted on Cu(II), Pb(II), Cd(II), Zn(II), and Mn(II) ions. AgNPs exhibited high reactivity towards Cu2+, changing color from brownish to clear white within a minute upon Cu2+ addition, unlike Cd2+, Mn2+, Zn2+, and Pb2+, which showed negligible changes. This indicates a heightened sensitivity of AgNPs to Cu2+ ions. Such a colorimetric sensor could be instrumental in detecting heavy metals in drinking water, showcasing the potential application of AgNPs in environmental monitoring.


Silver nanoparticles; Biosynthesis; Basil leaf extract, Poly acrylic acid; Colorimetry

Full Text:



[1] D. S. Vijaykumar, T. Anbalagan ,M. Nithyanandan & N. Namboothri, “Watering Pot Shell, Brechites penis (Linnaeus, 1758), a new record to India (Mollusca: Bivalvia: Anomalodesmata),” Journal of Threatened Taxa, vol. 5, no. 12, pp. 4679–4681, 2013,

doi: 10.11609/JoTT.o3479.4679-81.

[2] J. Li, X. Wang, G. Zhao et al., “Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions,” Chemical Society Reviews, vol. 4, no. 7, pp. 2322–2356, 2018,

doi: 10.1039/C7CS00543A.

[3] F. E .P, Almaquer & J.V.D, Perez, “Evaluation of the Colorimetric Performance of Unmodified Citrate-Stabilized Silver Nanoparticles for Copper (II) Sensing in Water,” Key Engineering Materials, vol. 821, pp. 372–378, 2019,

doi: 10.4028/

[4] M. Nurfadhilah, I. Nolia, W. Handayani & C. Imawan, “The Role of pH in Controlling Size and Distribution of Silver Nanoparticles using Biosynthesis from Diospyros discolor Willd. (Ebenaceae),” IOP Conference Series: Materials Science and Engineering, vol. 367, pp. 1-2, 2018,

doi: 10.1088/1757-899X/367/1/012033.

[5] S. A. Akintelu, Y. Bo & A .S. Folorunso, “Review on Synthesis, Optimization, Mechanism, Characterization, and Antibacterial Application of Silver Nanoparticles Synthesized from Plants,” Journal of Chemistry, vol. 2020, pp. 1–12, 2020,

doi: 10.1155/2020/3189043.

[6] Z. Zhang, H. Wang, Z. Chen et al., “Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications,” Biosensors and Bioelectronics, vol. 114, pp. 52–65, 2018,

doi: 10.1016/j.bios.2018.05.015.

[7] K. M. M. A. El-Nour, A. Eftaiha, A. Al-Warthan & R. A. A. Ammar, “Synthesis and applications of silver nanoparticles,” Arabian Journal of Chemistry, vol. 3, no. 3, pp. 135–140, 2010,

doi: 10.1016/j.arabjc.2010.04.008.

[8] D. Kalpana, J. H. Han, W. S. Park et al., “Green biosynthesis of silver nanoparticles using Torreya nucifera and their antibacterial activity,” Arabian Journal of Chemistry, vol. 12, no. 7, pp. 1722–1732, 2019,

doi: 10.1016/j.arabjc.2014.08.016.

[9] G. G. Michel, R. F. Sigal, F.. Civan & D.. Devegowda, “Parametric Investigation of Shale Gas Production Considering Nano-Scale Pore Size Distribution, Formation Factor, and Non-Darcy Flow Mechanisms,” SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, October 2011,

doi: 10.2118/147438-MS.

[10] T. Wahyudi, D. Sugiyana & Q. Helmy, “Synthesis of silver Nanoparticel and Acrivity Test against E.coli and S. aureus Bacteria,” Textile Arena, vol. 26, no.1, pp. 55-60, 2011,

doi: 10.31266/at.v26i1.1442.

[11] M. Nidya, M. Umadevi & B. J. M. Rajkumar, “Structural, morphological and optical studies of l-cysteine modified silver nanoparticles and its application as a probe for the selective colorimetric detection of Hg2+,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 133, pp. 265–271. 2014,

doi: 10.1016/j.saa.2014.04.193.

[12] T. Harningsih & W.Wimpy, “Uji Aktivitas Antioksidan Kombinasi Ekstrak Daun Kersen (Muntingia calabura Linn.) dan Daun Sirsak (Anonna muricata Linn.) Metode DPPH (2,2-diphenyl-1- picrilhidrazyl),” Biomedika, vol. 11, no. 2, pp. 70–75. 2018,

doi: 10.31001/biomedika.v11i2.422.

[13] K. Mustikasari & D. Ariyani, “Skrining fitokimia ekstrak metanol biji Kalangkala (Litsea angulata),” Sains dan Terapan Kimia, vol. 4, no. 2, pp.131-136, 2010,

doi: 10.20527/jstk.v4i2.2057.

[14] S. Kursia, J. S. Lebang & Nursamsiar “Uji Aktivitas Antibakteri Ekstrak Etilasetat Daun Sirih Hijau (Piper betle L.) terhadap Bakteri Staphylococcus epidermidis,” Indonesian Journal of Pharmaceutical Science and Technology, vol. 3, no. 2, pp. 72–77, 2016.

Google Scholar

[15] M. Marlinda, M. S. Sangi & A. D. Wuntu, “Analisis Senyawa Metabolit Sekunder dan Uji Toksisitas Ekstrak Etanol Biji Buah Alpukat (Persea americana Mill.),” Jurnal MIPA, vol. 1, no. 1, pp. 24-28, 2012,

doi: 10.35799/jm.1.1.2012.427.

[16] L. Mulfinger, S. D. Solomon, M. Bahadory et al., “Synthesis and Study of Silver Nanoparticles,” Journal of Chemical Education, vol. 84, no. 2, p. 322, 2007,

doi: 10.1021/ed084p322.

[17] S. Dawadi, S. Katuwal, A. Gupta et al., “Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications,” Journal of Nanomaterials, vol. 2021, pp. 1–23., 2021,

doi: 10.1155/2021/6687290.

[18] M. O. Ullah, M. Haque, K. F. Urmi et al., “Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh,” Asian Pac J Trop Biomed., vol. 3, no. 1, pp. 1-7, 2013,

doi: 10.1016/S2221-1691(13)60015-5.

[19] N. Adrianto, A. M. Panre, N. I. Istiqomah et al., “Localized surface plasmon resonance properties of green synthesized silver nanoparticles,” Nano-Structures & Nano-Objects, vol. 31. 2020,

doi: 10.1016/j.nanoso.2022.100895.

[20] P. Singh, Y. Kim, D. Zhang & D. Yang, “Biological Synthesis of Nanoparticles from Plants and Microorganisms,” Trends in Biotechnology, vol. 34, no. 7, pp. 588–599. 2016,

doi: 10.1016/j.tibtech.2016.02.006.

[21] Y. J. Song, M. Wang, X. Y. Zhang et al., “Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires,” Nanoscale Research Letters, vol. 9, no. 1, p. 17, 2014,

doi: 10.1186/1556-276X-9-17.

[22] P. Sharma, S. Pant, S. Rai et al., “Green Synthesis of Silver Nanoparticle Capped with Allium cepa and Their Catalytic Reduction of Textile Dyes: An Ecofriendly Approach,” Journal of Polymers and the Environment, vol. 26, no. 5, pp. 1795–1803, 2018,

doi: 10.1007/s10924-017-1081-7.

[23] M. Nidhin, R. Indumathy, K. J. Sreeram & B. U. Nair, “Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates,” Bulletin of Materials Science, vol. 31, no. 1, pp. 93–96, 2008,

doi: 10.1007/s12034-008-0016-2.

[24] J. V. Rohit, J. N. Solanki & S. K. Kailasa, “Surface modification of silver nanoparticles with dopamine dithiocarbamate for selective colorimetric sensing of mancozeb in environmental samples,” Sensors and Actuators B: Chemical, vol. 200, pp. 219–226, 2014,

doi: 10.1016/j.snb.2014.04.043.

[25] D. Xiong & H. Li, “Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water,” Nanotechnology, vol. 19, no. 46, 2008,

doi: 10.1088/0957-4484/19/46/465502.

[26] S. Maiti, G. Barman & J. K. Laha, “Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles,” Applied Nanoscience, vol. 6, no. 4, pp. 529–538, 2016,

doi: 10.1007/s13204-015-0452-4.


  • There are currently no refbacks.