Effect of Polyaniline/Graphene Oxide Thickness as A Gas Sensor Material for Robusta Coffee Aroma Tests

Tri Mulyono, Asnawati Asnawati, Silvia Sri Wulandari

Abstract

The intricate aroma of coffee arises from a complex blend of volatile compounds, each characterized by distinct attributes and intensities. This study focuses on synthesizing and characterizing the PANI/GO composite. It explores the impact of sensor thickness, rooted in the PaNi/GO composite, on its responsiveness to coffee aroma. Moreover, the findings hold promise as a reference point for sensor development. The PANI/GO composite, doped with HCl, was synthesized using a chemical oxidative polymerization technique in an aqueous solution, employing ammonium persulfate (APS) as the oxidant. Functional group analysis was conducted on the synthesized PANI/GO composite via FTIR (Fourier Transform Infrared). Subsequently, the composite was employed to create a gas sensor with varying thicknesses—0.14, 0.21, 0.28, 0.35, and 0.44 mm. This PANI/GO gas sensor was evaluated using robusta coffee steam from the Sidomulyo region, with resistance measurements performed using a multimeter. The optimization process encompassed sensor conductivity, sensitivity, response time, and repeatability considerations. The most effective sensor thickness emerged as 'Sensor 4,' possessing a 0.35 mm thickness, showcasing a conductivity of 4.69 x 10-9 S/cm, sensitivity of 0.67, response time of 18 seconds, and repeatability of 2.10%. These outcomes hold significant implications for enhancing sensor design and performance, particularly in capturing intricate aromatic profiles such as coffee scents.

Keywords

Coffee Aroma; Thickness; PANI/ GO; Gas Sensor

Full Text:

PDF

References

[1] V. Bochenkov and G. Sergeev, “Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures,” in Metal Oxide Nanostruct. Appl., 2010, pp. 31–52.

Google Scholar

[2] R. A. L. Da Vega and N. P. Putri, " Sebuah Review: Polianilin (PANi) Sebagai Bahan Aktif Pendeteksi Asam," Jurnal Inovasi Fisika, vol. 9, no. 2, pp. 105-118, 2020,

doi: 10.26740/ifi.v9n2.p105-118.

[3] M. P. Utomo, E. W. LFX, A. K. Prodjosantoso, and R. Wulandari, “Nanoparticle Application of Tin White Products As A Microsensor Ethanol,” J. Penelit. Saintek, vol. 18, no. 1, 2013,

doi: 10.21831/jps.v18i1.1831.

[4] S. Dhall, B. R. Mehta, A. K. Tyagi, and K. Sood, “A review on environmental gas sensors: Materials and technologies,” Sensors Int., vol. 2, p. 100116, 2021,

doi: 10.1016/j.sintl.2021.100116.

[5] S. Naz, I. Javid, S. Konwar, P. K. Singh, M. Sahni, and B. Bhattacharya, “Solid-state gas sensor,” Mater. Today Proc., vol. 49, pp. 3245–3249, 2022,

doi: 10.1016/j.matpr.2020.11.1031.

[6] S. A. Akbar, “Sensor Gas Amonia Berbasis Polimer Konduktif Polianilina: Sebuah Review,” QUIMICA: Jurnal Kimia Sains dan Terapan, vol. 3, no. 2. pp. 1–8, 2022.

doi: 10.33059/jq.v3i2.4678.

[7] S. Pandey, “Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review,” J. Sci. Adv. Mater. Devices, vol. 1, no. 4, pp. 431–453, 2016,

doi: 10.1016/j.jsamd.2016.10.005.

[8] I. D. P. Hermida, P. Sinaga, and G. Soleha, “Karakterisasi Sensor Gas CO Berbasis Bahan SnO2 dengan Metoda Solgel Menggunakan Teknologi Film Tebal,” J. Elektron. dan Telekomun., vol. 13, p. 60, Jun. 2016,

doi: 10.14203/jet.v13.60-65.

[9] S. Capone et al., “Solid-state gas sensors: State of the art and future activities,” J. Optoelectron. Adv. Mater., vol. 5, no. 5, pp. 1335–1348, 2003,

doi: 10.1002/chin.200429283.

[10] A. Dey, “Semiconductor metal oxide gas sensors: A review,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 229, no. December 2017, pp. 206–217, 2018,

doi: 10.1016/j.mseb.2017.12.036.

[11] S. Thomas and N. Joshi, Functional Nanomaterials Advances in Gas Sensing Technologies: Advances in Gas Sensing Technologies. 2020,

doi: 10.1007/978-981-15-4810-9.

[12] M. B. Malino, B. Sitorus, and R. A. William, “Sintesis Polianilina Pada Matriks Selulosa Sebagai Elektrolit Padat Pada Model Baterai Sederhana,” J. Kim. Khatulistiwa, no. Vol 3, No 4 (2014): Jurnal Kimia Khatulistiwa, 2014.

Google Scholar

[13] R. Arsat, X. F. Yu, Y. X. Li, W. Wlodarski, and K. Kalantar-zadeh, “Hydrogen gas sensor based on highly ordered polyaniline nanofibers,” Sensors Actuators B Chem., vol. 137, no. 2, pp. 529–532, 2009,

doi: 10.1016/j.snb.2009.01.028.

[14] S. Hidayat and M. K. W. A. I. R. C. Leonardo, “Sintesis Polianilin dan Karakteristik Kinerjanya sebagai Anoda pada Sistem Baterai Asam Sulfat,” JMEI, vol. 6, no. 1, pp. 20-26, 2016,

doi: 10.24198/jmei.v6i01.9415.

[15] S. Konwer, A. K. Guha, and S. K. Dolui, “Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials,” J. Mater. Sci., vol. 48, no. 4, pp. 1729–1739, 2013,

doi: 10.1007/s10853-012-6931-z.

[16] H. Y. Mohammed et al., “Selective and sensitive chemiresistive sensors based on polyaniline/graphene oxide nanocomposite: A cost-effective approach,” J. Sci. Adv. Mater. Devices, vol. 7, no. 1, p. 100391, 2022,

doi: 10.1016/j.jsamd.2021.08.004.

[17] G. Xu et al., “Preparation of Graphene Oxide/Polyaniline Nanocomposite with Assistance of Supercritical Carbon Dioxide for Supercapacitor Electrodes,” Ind. Eng. Chem. Res., vol. 51, pp. 14390–14398, Oct. 2012,

doi: 10.1021/ie301734f.

[18] Z. Wu et al., “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sensors Actuators, B Chem., vol. 178, pp. 485–493, 2013,

doi: 10.1016/j.snb.2013.01.014.

[19] J. Zheng, M. Xingfa, X. He, M. Gao, and G. Li, “Preparation, characterizations, and its potential applications of PANi/ graphene oxide nanocomposite,” Procedia Eng., vol. 27, pp. 1478–1487, Dec. 2012,

doi: 10.1016/j.proeng.2011.12.611.

[20] E. Gill, A. Arshak, K. Arshak, and O. Korostynska, “Response mechanism of novel polyaniline composite conductimetric pH sensors and the effects of polymer binder, surfactant and film thickness on sensor sensitivity,” Eur. Polym. J., vol. 46, no. 10, pp. 2042–2050, 2010,

doi: 10.1016/j.eurpolymj.2010.07.012.

[21] S.-B. Yoon, E.-H. Yoon, and K.-B. Kim, “Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications,” J. Power Sources, vol. 196, no. 24, pp. 10791–10797, 2011,

doi: 10.1016/j.jpowsour.2011.08.107.

[22] J. Haberko et al., “Conductivity of Thin Polymer Films Containing Polyaniline,” Mol. Cryst. Liq. Cryst., vol. 485, no. 1, pp. 796–803, Apr. 2008,

doi: 10.1080/15421400801918112.

[23] S. Mehdi Khoshfetrat and M. A. Mehrgardi, “Dual amplification of single nucleotide polymorphism detection using graphene oxide and nanoporous gold electrode platform,” Analyst, vol. 139, no. 20, pp. 5192–5199, 2014,

doi: 10.1039/C4AN01171F.

[24] T. N. A. B. T. A. Mutalib, S. J. Tan, K. L. Foo, Y. M. Liew, C. Y. Heah, and M. M. A. B. Abdullah, “Properties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading,” Polym. Bull., vol. 78, no. 9, pp. 4835–4847, 2021,

doi: 10.1007/s00289-020-03334-w.

[25] M. Donarelli et al., “Graphene oxide for gas detection under standard humidity conditions,” 2D Mater., vol. 2, p. 35018, Sep. 2015,

doi: 10.1088/2053-1583/2/3/035018.

[26] E. Gill, A. Arshak, K. Arshak, and O. Korostynska, “Response mechanism of novel polyaniline composite conductimetric pH sensors and the effects of polymer binder, surfactant and film thickness on sensor sensitivity,” Eur. Polym. J., vol. 46, no. 10, pp. 2042–2050, 2010,

doi: 10.1016/j.eurpolymj.2010.07.012.

[27] J. Haberko, J. Raczkowska, and A. Bernasik, “Conductivity of Thin Polymer Films Containing Polyaniline,” Mol. Cryst. Liq. Cryst., no. February 2012, pp. 796–803, 2011,

doi: 10.1080/15421400801918112.

[28] C. Cinryani, L. Umar, S. Salomo, and M. Ginting, “Pengukuran Nilai Induktansi Pelat Aluminium Berdasarkan Variasi Kapasitansi Menggunakan Modul Evb Ldc 1000,” Komun. Fis. Indones., vol. 17, p. 24, Mar. 2020,

doi: 10.31258/jkfi.17.1.24-29.

[29] K. J. Albert et al., “Cross-Reactive Chemical Sensor Arrays,” Chem. Rev., vol. 100, no. 7, pp. 2595–2626, Jul. 2000,

doi: 10.1021/cr980102w.

[30] Y. P. Safitri and H. Kuswanto, “Uji Sensitivitas Sensor Beban Berbasis Polimer Optical Fiber Yang Dibentuk Melingkar Dengan Nanopartikel Tio2 Sebagai Pelapis Cladding,” J. Ilmu Fis. dan Ter., vol. 7, no. 4, pp. 332–335, 2018.

Google Scholar

[31] Rouhillah and B. Amri, " Sensitivitas Sensor Gas Berbasis Quartz Crystal Microbalance Terhadap Senyawa Organik," J. Innovation, vol. 7, no. 2, pp. 1-5, 2018,

doi: 10.55600/jipa.v7i2.59.

[32] Z. Cheng, J. Moore, and L. Yu, “High-Throughput Relative DPPH Radical Scavenging Capacity Assay,” J. Agric. Food Chem., vol. 54, pp. 7429–7436, Nov. 2006,

doi: 10.1021/jf0611668.

Refbacks

  • There are currently no refbacks.