The Characterization of Foam Glass Ceramic Based on Industrial Solid Waste

Kusno Isnugroho, Yusup Hendronursito, Dwi Asmi


An initial characterization of the raw materials for manufacturing foam glass ceramics has been done using raw materials derived from industrial solid waste. The raw material is in the form of fly ash, a waste of coal combustion in steam power plants, stone crusher industrial waste in the form of basalt rock ash, glass bottle waste, and used aluminum smelting waste. The initial characterization was done by analyzing the chemical composition using the XRF method, identifying the crystalline phase in the raw materials using the XRD method, and morphological analysis using SEM. From the results of raw material analysis, the dominant chemical composition is SiO2, CaO, Fe2O3, and Al2O3 compounds. At the same time, the glass-ceramic foam formed has wollastonite, anorthite, and diopside crystalline phases. The pore structure formed is a closed pore.


glass ceramics; fly ash; basalt; foam; aluminium

Full Text:



Sun, Q. and Wang, H, “Effects of Na2B4O7.5H2O on Foam Glass-Ceramics Prepared from High Titanium Blast Furnace Slag”, Advanced in Engineering. Research, vol. 146, pp. 6–8, 2017. Attila, Y., Güden, M. and Taşdemirci, A, “Foam Glass Processing Using a Polishing Glass Powder Residue”, Ceramics Internasional, vol. 3(5), pp. 5869–5877, 2013. Monich, P.R et al., “Porous Glass-Ceramics from Alkali Activation and Sinter-Crystallization of Mixtures of Waste Glass and Residues from Plasma Processing of Municipal Solid Waste”, Journal of Cleaner Production, vol. 188, pp. 871–878, 2018. Ponsot, I. and Bernardo, E, “Self Glazed Glass Ceramic Foams from Metallurgical Slag and Recycled Glass”, Journal of Cleaner Production, Vol. 59, pp. 245-250, 2013. Fernandes, H.R et al., “Production and Characterisation of Glass Ceramic Foams from Recycled Raw materials”, Advances in Applied Ceramics, vol.108(1), pp. 9–13, 2009. Francis, A.A et al., “Processing, Structures and Compressive Properties of Porous Glass-Ceramic Composite Prepared from Secondary By-Product Materials”, Ceramics Internasional, vol. 39(6), pp. 7089-7095. 2013. Sedlaˇcík, M et al., “Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth”, Materials, vol.15(4), pp. 1-13. 2022. König, J., Petersen, R.R. and Yue, Y, “Inflfluence of The Glass–Calcium Carbonate Mixture's Characteristics on The Foaming Process and The Properties of The Foam Glass”, Journal of European Ceramic Society, vol. 34(6), pp. 1591–1598, 2014. Shi, H et al., “Influence of Aluminium Nitride as a Foaming Agent on The Preparation of Foam”, International Journal Minerals, Metallurgy and Materials, vol. 23, pp. 595-600, 2016. Sihombing A.J et al., “Pembuatan Foam Glass Menggunakan Limbah Pecahan Kaca dan Abu Terbang (Fly ash) Dari Pabrik Sawit”, Jurnal Online Mahasiswa Fakultas Teknik, vol. 3(1), pp. 1-7, 2016. Saparuddin, D.I et al., “Effect of Sintering Suhu on The Crystal Growth, Microstructure and Mechanical Strength of Foam Glass-Ceramic from Waste Materials”, Journal of Materials Research and Technology, vol. 9(3), pp. 5640–5647, 2020. Francis, A, “Non-Isothermal Crystallization Kinetics of a Blast Furnace Slag Glass”, Journal of The American Ceramic Society, vol. 88, pp. 1859–1863, 2005. Cheng, T.W and Chiu, J, “Fire-resistant Geopolymer Produced by Granulated Blast Furnace Slag” Minerals Engineering, vol.16, pp. 205–210, 2003. Liu, H et al., “Preparation and Properties of Glass–Ceramics Derived from Blast-Furnace Slag by a Ceramic-Sintering process”, Ceramics Internasional, vol.35, pp. 3181–3184, 2009. Khater, G, “Influence of Cr2O3, LiF, CaF2 and TiO2 Nucleants on The Crystallization Behavior and Microstructure of Glass-Ceramics Based on Blast-Furnace Slag”, Ceramics Internasional, vol. 37, pp. 2193–2199, 2011. Calahoo, C, and Wondraczek, L, “Ionic Glasses: Structure, Properties and Classification”, Journal of Non-Crystalline Solids:X, vol. 8, pp.100054, 2020. Carp, O et al., “Photoinduced Reactivity of Titanium Dioxide”. Progress in Solid State Chemistry, vol. 23, pp. 33-177, 2014. Hull, D. An Introduction to Composite Material. Cambridge University Press, 2016. Mills, J.F. M. The Pergamon Dictionary of Art. Pergamon Press Ltd, 2017. Tamalia, N et al., “Pengaruh Penambahan Alumina (0 dan 10 wt%) terhadap Karakteristik Termal (DTA-TGA) dan Konduktivitas Termal Bahan Keramik Kordierit Berbasis Silika Sekam Padi”, Jurnal Teori Dan Aplikasi Fisika, vol. 5(1), pp. 91–95, 2017. Rahaman, M. N. Pengolahan Keramik dan Sintering: edisi ke-2. Pers CRC, 2017. Raharjo. Pengaruh Pingkat Kemurnian Bahan Baku Alumina Terhadap Temperatur Sintering dan Karakteristik Keramik Alumina. Pengembangan Teknologi Kimia Untuk Pengelolahan SDM Indonesia, pp.1693–4393, 2015. Mulyaningsih Sri. Kristalografi dan Mineralogi: edisi ke-1. Akprind Press, 2018. G. Balakrishnan et al., “High Temperature Rheology of Calcium Aluminosilicate (Anorthite) Glass-Ceramics Under Unaxial and Triaxial Loading”, Journal of The American Ceramic Society, vol. 84, pp. 2617, 2001. L. Kuzmickas et al., “Influence of Diopside: Feldspar Ratio in Ceramic Reactions Assessed by Quantitative Phase Analysis (X-ray diffraction - Rietveld method)”, Ceramica, vol. 59, pp. 345-350, 2013. J. Martin-Marquez et al., “Effect of Firing Temperature on Sintering of Porcelain Stoneware Tiles”, Ceramics Internasional, vol. 34 (8), pp. 1867–1873, 2008. Roy, R et al., “A Review of Advanced Mullite Ceramics”, Enggineered Science, vol.18, pp. 20-30, 2022. Roy, R et al, “Fabrication of Mullite Ceramic by Using Industrial Waste, 1st edition, Smart Cities: Concepts, Practices, and Applications. CRC Press, 2022. Obada, D.O et al., “Effect of Mechanical Activation on Mullite Formation in an Alumina-Silica Ceramics System at Lower Temperature, World Journal Engineering, vol.13, pp. 288–293, 2016. I. Dinaharan, “Influence of Ceramic Particulate Type on Microstructure and Tensile Strength of Aluminum Matrix Composites Produced Using Friction Stir Processing”, Journal of Asian Ceramic Societies, vol. 4, pp. 209-218, 2016. H.H. Lee et al., “High Strength and Toughness Al2O3 Composite Materials for The Improvement of Ceramic Channel in SRL Hot Dipping System, Material Science Forum, vol. 658, pp. 416-419, 2010. H.N. Yoshimura et al., “High Temperature Flexural Strength and Fracture Toughness of AlN with Y2O3 Ceramic”, Journal of Materials Science, vol. 44, pp. 5773-5780, 2009. Q. Lü et al., “Environment-Oriented Low-Cost Porous Mullite Ceramic Membrane Supports Fabricated from Coal Gangue and Bauxite”, Journal of Hazardous Materials, vol. 273, pp. 136-145, 2014. J. Chen et al., “Synthesis and Characterization of Reaction-Bonded Calcium Alumino-Titanate-Bauxite-SiC Composite Refractories in a Reducing Atmosphere”, Ceramics Internasional, vol. 44, pp. 15338-15345, 2018. Y. Meng et al., “Fabrication and Microstructure Investigation of Ultra-High-Strength Porcelain Insulator”, Journal of European Ceramic Society, vol. 32, pp. 3043-3049, 2012. T.S. Sasikala et al., “Forsterite-Based Ceramic- Glass Composites for Substrate Applications in Microwave and Milimeter Wave Communications”, Journal of Alloys and Compounds, vol. 461, pp. 555-559, 2008. J. Li, Q. Wang and J. Liu, P. Li, J, “Synthesis Process of Forsterite Refractory by Iron Ore Tailings”, Journal of Environmental Sciences Supplement, vol. 21, pp. S92-S95, 2009. S. Ni et al., “Preparation and Characterization of Forsterite (Mg2SiO4) Bioceramics”, Ceramics International, vol. 33, pp, 83-88, 2007. F. Tavangarian and R. Emadi, “Improving Degradation Rate and Apatite Formation Ability of Nanostructure Forsterite”, Ceramics Internasional, vol. 37, pp. 2275- 2280, 2011. M. Kharaziha and M. H. Fathi, “Synthesis and Characterization of Bioactive Forseterite Nanopowder”. Ceramics Internasional, vol. 35, pp. 2449- 2454, 2009. H. Ghomi et al., “Novel Fabrication of Forsterite Scaffold with Improved Mechanical Properties”, Journal of Alloys and Compounds, vol. 509, pp. L63-L68, 2011. Jaafar, S.H et al., “Effect of Sintering Temperatures and Foaming Agent Content to the Physical and Structural Properties of Wollastonite Based Foam Glass-Ceramics”, Science of Sintering, vol. 52, pp. 269-281, 2020. Müller, R et al., “Dissolution of Alumina, Sintering, and Crystallization in Glass Ceramic Composites for LTCC”, Journal of the American Ceramic Society, vol. 92 , pp. 1703–1708, 2009. Kobayasi, Y and Kato, E, “Low Temperature Fabrication of Anorthite Ceramics”, Journal of The American Ceramic Society, vol. 77, pp. 833-834, 1994. Agathopoulus, S et al., “Preparation and Characterization of High Compressive Strength Foams From Sheet Glass”. Journal of Porous Materials, vol. 13, pp. 133-135, 2006. Li Zhou et al., “Preparation and Characterization of Glass–Ceramic Foams with Waste Quartz Sand and Coal Gangue in Different Proportions”, Journal of Porous Materials, vol. 23, pp. 231-238, 2016.


  • There are currently no refbacks.