Biosynthesis of Methyl Esters from Used Cooking Oil (UCO) using Lipase Enzyme from Aspergillus oryzae on Moldy Copra

Nasriadi Dali, Seniwati Dali, Armadi Chairunnas, Hilda Ayu Melvi Amalia, Ayu Andini Puspitasari

Abstract

The successful production of methyl esters from used cooking oil (UCO) using lipase enzymes from Aspergillus oryzae on moldy copra has been achieved. This method offers an eco-friendly substitute for crude palm oil (CPO) in generating methyl esters or biodiesel, contributing to waste reduction, economic benefits, and lowered greenhouse gas emissions for sustainable development. This study aimed to synthesize methyl esters from UCO using the Aspergillus oryzae lipase enzyme sourced from moldy copra. The enzyme was purified through ammonium sulfate fractionation and gel filtration column chromatography. Electrophoresis validated its purity, and activity was assessed through the Erdmann and Lowry method. Methyl ester synthesis involved transesterification with a UCO (1 mol): methanol (9 mol): lipase enzyme (15% v/v) ratio. The enzyme displayed notable characteristics, including 43.76 units/mg protein activity, a 41.7 kDa molecular weight, optimum pH of 8.2, temperature preference of 35°C, Km of 0.046, and a 1.926 µmol/minute Vmax. This enzyme efficiently catalyzed UCO (triolein) into methyl ester (methyl oleate), yielding 75.65%. Characterization using Fourier Transform Infrared (FTIR) revealed specific functional groups like –OH carboxylic acid, C=C alkenes, C=O esters, methyl (CH3-), and methylene (-CH2-). Gas Chromatography-Mass Spectrometry (GC-MS) analysis identified prominent compounds: methyl palmitate (12.53%), methyl vacsenate (16.44%), and, notably, methyl oleate (41.08%). This underscores the potential of Aspergillus oryzae lipase as an effective biocatalyst for UCO transesterification, yielding valuable methyl esters or biodiesel.

Keywords

Aspergillus oryzae; Biosynthesis; Lipase Enzymes; Methyl Esters; Used Cooking Oil

Full Text:

PDF

References

[1] R. N. Sari, E. Hastarini, A. Henang, W. Widyajatmiko, and A. H. Tambunan, “Characteristics of Siamese Patin (Pangasius hypophthalmus) Oil Based Biolubricant,” JPB Kelautan dan Perikanan, vol. 12, no. 2, pp. 158-167, 2021,

doi: 10.15578/jpbkp.v15i2.675.

[2] D. Malhotra, J. Mukherjee, M. N. Gupta, and Munishwar, “Lipase Catalyzed Transesterification of Castor Oil by Straight Chain Higher Alcohols,” Journal of Bioscience and Bioengineering, vol. 119, no. 3, pp. 280-283, 2015,

doi: 10.1016/j.jbiosc.2014.08.005.

[3] L. Buchori, I. Istadi, and P. Purwanto, “Perkembangan Proses Produksi Biodiesel Sebagai Bahan Bakar Alternatif,” Prosiding Seminar Nasional Teknik Kima “Kejuang”, pp.1-9, 2015. Google Scholar

[4] Y. Mingrui, Q. Shaowei, & T. Tanwei, “Purification and Characterization of the Extracellular Lipase Lip2 from Yarrowia lipolytica,” Process Biochemistry, vol. 42, pp. 384-391, 2007, doi: 10.1016/j.procbio.2006.09.019.

[5] C. Ling-Zhi, T. Chin-Ping, K. Long, M. S. A. Yusoff, N. Arifin, L. Seong-Koon, and L. Oi-Ming, “Production of a Diacylgliserol-Enriched Palm Olein Using Lipase-Catalyzed Partial Hydrolysis: Optimization Using Response Surface Methodology,” Food Chemistry, vol. 105, pp. 1614- 1622, 2007, doi: 10.1016/j.foodchem.2007.03.070.

[6] G. P. McNeill, and P. E. Sonnet, “Low-calory Synthesis by Lipase-catalyzed Esterification of Monoglycerides,” JAOCS, vol. 72, no. 11, pp. 1301-1307, 1995, doi: 10.1007/BF02546203.

[7] A. Halldorsson, B. Kristinsson, C. Glynn, and G. G. Haraldsson, “Separation of EPA and DHA in Fish Oil by Lipase-catalyzed Esterification with Glycerol,” JAOCS, vol. 80, no. 9, pp. 915- 921, 2003, doi: 10.1007/s11746-003-0796-8.

[8] R. Sharma, Y. Chisti, and U. C. Banerjee, “Production, Purification, Characterization, and Application of Lipase,” Biotechnology Advances, vol.19, pp. 627-662, 2001, doi: 10.1016/s0734-9750(01)00086-6.

[9] S. Dali, A. R. Patong, M. N. Jalaluddin and P. A. Parenrengi, “Exploration and Isolation of Lipase Enzyme from Indigenus Infective Fungi (genus Aspergillus and Penicillium),” Lephas, vol. 14, no. 1, pp. 2005, doi: 10.31258/jnat.14.1.26-31.

[10] S. Dali, A. R. Patong, M. N. Jalaluddin, and P. A. Parenrengi, “Pemurnian dan Karakterisasi Enzim Lipase dari Aspergillus oryzae pada Kopra Berjamur,” Jurnal Natur Indonesia, vol. 14, no. 1, pp. 26-31, 2011,

doi: 10.31258/jnat.14.1.26-31.

[11] J. Sambrook, T. Fritsch, and T. Maniatis, Molecular Cloning: Laboratory Manual 1, New York: Cold Spring Harbor Laboratory Press,1989,

ISBN: 9780879695767.

[12] T. Vorderwulbecke, K. Kieslich, and H. Erdmann, “Comparison of Lipases by Different Assay. Enzyme,” Microb. Technol., vol. 14, pp. 631-639,1992,

doi: 10.1016/0141-0229(92)90038-P.

[13] S. P. Colowick, and N. O. Kaplan, Methods in Enzymology, New York: Academic Press. Inc. 1957.

Google Scholar

[14] M. P. Deutscher, Methods in Enzymology: Guide to Protein Purification, vol. 128, New York: Academic Press Inc. 1990,

ISBN: 9780121820831.

[15] N. D. Wela, A. D. Wela, S. Dali, A. Chairunnas, H. A. M. Amalia and S. A. A. Puspitasari, “Study of Reaction Conditions for the Synthesis of Methyl Oleic from Used Cooking Oil,” Akta Kimindo, vol. 6, no. 1, pp. 41-57, 2021.

doi: 10.12962/j25493736.v6i1.8106.

[16] J. Tong, M. Nakajima, H. Nabetani, Y. Kikuchi, “Characterization of surfactants used for monodispersed oil-in-water microspheres production by microchannel emulsification,” Studies in Surface Science and Catalysis, vol. 132, pp. 1055-1059, 2001,

doi: 10.1016/S0167-2991(01)82264-3.

[17] A. Basile and F. Dalena, Methanol, Elsevier, 2017,

ISBN: 9780444639035.

[18] N. B. M. Zin, B. M. Yusof, S. N. Oslan et al., “Utilization of acid pre-treated coconut dregs as a substrate for production of detergent compatible lipase by Bacillus stratosphericus,” AMB Express, vol. 7, no. 1, pp. 131, 2017,

doi: 10.1186/s13568-017-0433-y.

[19] R. Handayani, and J. Sulistyo, “Lipase Application of lipase technology for transesterification of fatty acid ester,” Biodiversitas, vol. 6, no. 3, pp. 164-167, 2005,

doi: 10.13057/biodiv/d060304.

[20] N. Dali, and A. Dali, “Synthesis of Nitro Ethyl Oleic from Used Cooking Oil,” Al-Kimia, vol. 7, no. 1, pp. 46-55, 2019.

doi: 10.24252/al-kimia.v7i1.7642.

[21] H. Abbas, A. Hiol, V. Deyris, and L. Comeau, “Isolation and Characterization of an Extracellular Lipase from Mucor sp Strain Isolated from Palm Fruit,” Enzyme and Microbial Technology, vol. 31, pp. 968-975, 2002,

doi: 10.1016/S0141-0229(02)00190-4.

[22] C. Shaoxin, Q. Lili, and S. Bingzhao, “Purification and Properties of Enantioselective Lipase from a Newly Isolated Bacillus cereus C71,” Process Biochemistry, vol. 42, pp. 988- 944, 2007,

doi: 10.1016/j.procbio.2007.03.010.

[23] R. A. Samsumaharto, “Partial Characterization of Lipase from Cocoa Beans (Theobromacacao L.) of Clone PBC 159,” Indo. J. Chem, vol. 3, pp. 448-453, 2008,

doi: 10.22146/ijc.21604.

[24] D. S. Page, Principles of Biological Chemistry, New York: Willard Grant Press, 1981,

doi: 9780871507136.

[25] Rahayu, “Pemanfaatan Limbah Lemak Ayam Broiler (Gallus domesticus) Sebagai Bahan Baku Pembuatan Biodiesel Melalui Proses Transesterifikasi,” J. Chemurgy, vol. 2, no. 2, pp. 6-14, 2014,

doi: 10.30872/cmg.v2i2.2232.

[26] M. S. A. Rahman, M. J. Jalil, M. Muain et al., “Epoxidation of waste cooking oil using catalytic in situ generated performic acid,” IOP Conference Series: Earth and Environmental Science, vol. 476, 2020,

doi: 10.1088/1755-1315/476/1/012143.

[27] M. Pagliaro, Glycerol, Elsevier, 2017,

ISBN: 9780128122051.

[28] T.W. Abraham, R. Höfer, “Lipid-Based Polymer Building Blocks and Polymers,” Polymer Science: A Comprehensive Reference, vol. 10, pp. 15-58, 2012,

doi: 10.1016/B978-0-444-53349-4.00253-3.

[29] J. B. Lambert, S. Gronert, H. F. Shurvell, and D. A. Lightner, Organic Structural Spectroscopy, 2nd Ed., New Jersey: Pearson Prentice Hall, 2011,

ISBN: 9781292054056.

[30] W. Kemp, Organic Spectroscopy, 3rd Ed., London: MacMillan Education Ltd., 1991.

DOI: 10.1007/978-1-349-15203-2.

[31] H. Sastrohamidjojo, Dasar-dasar Spektroskopi, Yogyakarta: UGM Press, 2018,

ISBN: 9789794208175.

[32] D. Suhendra, E. R. Gunawan, “Sintesis Asam-Asam Lemak Hidroksamik dari Minyak Kelapa Menggunakan Lipase sebagai Katalis,” Jurnal Natur Indonesia, vol. 12, no. 2, pp.160-164, 2012,

doi: 10.31258/jnat.14.1.160-164.

[33] J. H. Mandei, M. Edam, Y. F. Assah et al., “Metil Ester Minyak Kelapa Murni yang Telah Diekstrak Senyawa Fenolik dengan Variasi Waktu Transesterifikasi.” Jurnal Riset Teknologi Industri, vol. 14, no. 2, pp. 309-319, 2020,

doi: 10.26578/jrti.v14i2.6557.

[34] R. D. Kusumaningtyas, Normaliza, E. D. N. Anisa et al., “Synthesis of Biodiesel via Interesterification Reaction of Calophyllum inophyllum Seed Oil and Ethyl Acetate over Lipase Catalyst: Experimental and Surface Response Methodology Analysis,” Energies, vol. 15, no. 20, pp. 7737, 2022,

doi: 10.3390/en15207737.

[35] D. Malhotra, J. Mukherjee, M. N. Gupta, and Munishwar, “Lipase Catalyzed Transesterification of Castor Oil by Straight Chain Higher Alcohols,” Journal of Bioscience and Bioengineering, vol. 119, no. 3, pp. 280-285, 2015,

doi: 10.1016/j.jbiosc.2014.08.005.

[36] D. Susvira, R. Hartono and R. A. Fauzantoro, “Synthesis of Biodiesel from Waste Cooking Oil Using Heterogeneous Catalyst (CaO) Based on Duck Eggshell with Transesterification Reaction,” Jurnal Kartika Kimia, vol. 5, no. 1, pp. 40-43, 2022,

doi: 10.26874/jkk.v5i1.122.

[37] Y. K. Salimi, N. I. Ischak, and Y. Ibrahim, “Karakterisasi Asam Lemak Hasil Hidrolisis pada Minyak Biji Kelor (Moringa oleifera) dengan Metode Kromatografi Gas-Spektroskopi Massa,” Jamb. J. Chem., vol. 01, no. 1, pp. 6-14, 2019.doi: 10.34312/jambchem.v1i1.2101. [38] M. T. Bintang, Aisyah, and A. Saleh, “Sintesis Biodiesel dari Minyak Biji Nyamplung (Callophyllum innophylum L.) dengan Metode Ultrasonokimia,” Chimica et Natura Acta, vol. 3 no. 2, pp. 84-89, 2015, doi: 10.24198/cna.v3.n2.9199. [39] E. Setiawati, F. Edwar, “Teknologi Pengolahan Biodiesel dari Minyak Goreng Bekas dengan Teknik Mikrofiltrasi dan Transesterifikasi sebagai Alternatif Bahan Bakar Mesin Diesel,” Jurnal Riset Industri, vol. VI, no. 2, pp. 117-127, 2012. Google Scholar [40] E. G. Fransina, J. Latupeirissa, “Analysis of Fatty Acid Components in Blue Bubara Fish (Caranx melampygus),” MjoCE, vol. 2, no. 2, pp. 89-95, 2012.doi: 10.30598/MJoCEvol2iss2pp89-95.

[41] R. Musta, L. Nurliana and M. M. Halulanga, “Synthesis of Methyl Ester Nitrate from Mahogany Seed Oil (Swietenia mahagoni Linn),” Indonesian Journal of Chemical Research, vol. 9, no. 1, pp. 63-68, 2021,

doi: 10.30598//ijcr.2021.9-rus.

[42] I. Aziz, M. N. Aristya, Hendrawati, and L. Adhani, “Peningkatan Kualitas Crude Glycerol dengan Proses Adsorpsi Menggunakan Sekam Padi,” Jurnal Kimia Valensi, vol. 4, no. 1, pp. 34-41, 2018,

doi: 10.15408/jkv.v4i1.7498.

[43] D. Hashatan, J. Sunaryo, and L. N. Komariah, “Pengaruh Konsentrasi H2SO4 dan Waktu Reaksi terhadap Kuantitas Dan Kualitas Biodiesel dari Minyak Jarak Pagar,” Jurnal Teknik Kimia, vol. 2, no. 18, pp. 26-36, 2012.

Google Scholar

[44] F. C. Hidayati, Masturi, and I. Yulianti, “Pemurnian Minyak Goreng Bekas Pakai (Jelantah) dengan Menggunakan Arang Bonggol Jagung,” Jurnal Ilmu Pendidikan Fisika, vol. 1, no. 2, pp. 67-70, 2016,

doi: 10.26737/jipf.v1i2.67.

[45] Abdullah, Triyono, W. Trisunaryanti, and W. Haryadi, “Purification of Methyl Ricinoleate on Producing of Cetana Improver,” J. Phys. Conf. Series., vol. 82, no. 4, pp. 1-6, 2016,

doi: 10.1088/1742-6596/824/1/012018.

[46] J. H. Mandei, M. Edam, Y. Assah, A. Makalalag, and D. Silaban, “Metil Ester Minyak Kelapa Murni yang Telah Diekstrak Senyawa Fenolik dengan Variasi Waktu Transesterifikasi,” Jurnal Riset Teknologi Industri, vol. 14, no. 2, pp. 307-316, 2020,

doi: 10.26578/jrti.v14i2.6557.

Refbacks

  • There are currently no refbacks.