Conventional and Microwave-Assisted Synthesis of 4’-Bromochalchone Utilizing 4-Bromoacetophenone and Benzaldehyde as Starting Material in Alkaline Condition

Iin Narwanti, Hanna Nur Aisyah Afifah

Abstract

This study focuses on synthesizing 4’-bromochalcone through conventional and irradiation microwave methods to determine each method's time efficiency and yield. 4-Bromoacetophenone was treated with benzaldehyde in the presence of a base. Conventionally, the reaction mixture was stirred at room temperature. While in the microwave irradiation method, the reaction mixture was irradiated at a power of 140 watts. The compound was identified, including the melting point and physicochemical properties. The structure of the compound was confirmed by infrared, 1H- and 13C-nuclear magnetic resonance, and mass spectroscopy spectral data. The results showed that 4’-bromochalcone had been successfully synthesized using conventional and microwave irradiation methods in a good yield (94.61%±0.6793 and 89.39%±0.6418, consecutively). The structure assignment based on infrared, 1H- and 13C-nuclear magnetic resonance, and mass spectroscopy spectral data revealed that the synthesized product was 4’-bromochalcone. Synthesis of 4’-bromochalchone using microwave irradiation could be done in a shorter time than the conventional method. 

Keywords

4’bromochalcone; conventional method; irradiation microwave

Full Text:

PDF

References

[1] S. Caddick, "Microwave assisted organic reactions," Tetrahedron, vol. 51, no. 38, pp. 10403-10432, 1995,

doi:10.1016/0040-4020(95)00662-R.

[2] B. A. Alqurashy, "Ecofriendly microwave-assisted preparation, characterization and antitumor activity of some propylimidazolium-based Ionic liquids derivatives," Journal of Taibah University for Science, vol. 14, no. 1, pp. 1457-1462, 2020,

doi:10.1080/16583655.2020.1829395.

[3] A. M. Rodríguez, P. Prieto, A. de la Hoz, Á. Díaz-Ortiz, D. R. Martín, and J. I. García, "Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS)," (in eng), ChemistryOpen, vol. 4, no. 3, pp. 308-17, 2015,

doi: 10.1002/open.201402123.

[4] A. de la Hoz, A. Díaz-Ortiz, and P. Prieto, "CHAPTER 1 Microwave-Assisted Green Organic Synthesis," in Alternative Energy Sources for Green Chemistry: The Royal Society of Chemistry, pp. 1-33, 2016,

doi:10.1039/9781782623632-00001.

[5] J. J. Shah and K. Mohanraj, "Comparison of Conventional and Microwave-assisted Synthesis of Benzotriazole Derivatives," (in eng), Indian journal of pharmaceutical sciences, vol. 76, no. 1, pp. 46-53, 2014.

[6] M. T. Konieczny, W Konieczny, M. Sabisz, A. Skladanowski, R. Wakieć, E. Augustynowicz-Kopeć, & Z. Zwolska, "Acid-catalyzed synthesis of oxathiolone fused chalcones. Comparison of their activity toward various microorganisms and human cancer cells line," Eur J Med Chem, vol. 42, no. 5, pp. 729-733, 2007/05/01/ 2007,

doi: 10.1016/j.ejmech.2006.12.014.

[7] H. Zhu, "Synthesis of Chalcone Derivatives: Inducing Apoptosis of HepG2 Cells via Regulating Reactive Oxygen Species and Mitochondrial Pathway," Front Pharmacol, vol. 10, pp. 1341, 2019,

doi: 10.3389/fphar.2019.01341.

[8] S. Kagatikar, "Pyrene-based chalcones as functional materials for organic electronics application," Materials Chemistry and Physics, vol. 293, pp. 126839, 2022,

doi:10.1016/j.matchemphys.2022.126839.

[9] H. V. Chavan, S. D. Ganapure, N. N. Mali, and P. S. Bhale, "Synthesis, characterization and biological evaluation of N- substituted indolyl chalcones as anticancer, anti-inflammatory and antioxidant agents," Materials Today: Proceedings, 2022,

doi: 10.1016/j.matpr.2022.09.264.

[10] L. W. Wijayanti, R. T. Swasono, W. Lee, and J. Jumina, "Synthesis and Evaluation of Chalcone Derivatives as Novel Sunscreen Agent," Molecules, vol. 26, no. 9, pp. 2698, 2021,

doi: 10.3390/molecules26092698.

[11] K. J. Jarag, D. V. Pinjari, A. B. Pandit, and G. S. Shankarling, "Synthesis of chalcone (3-(4-fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one): Advantage of sonochemical method over conventional method," Ultrasonics Sonochemistry, vol. 18, no. 2, pp. 617-623, 2011,

doi: 10.1016/j.ultsonch.2010.09.010.

[12] M. Álvarez, D. Crivoi, F. Medina, and D. Tichit, "Synthesis of Chalcone Using LDH/Graphene Nanocatalysts of Different Compositions," ChemEngineering, vol. 3, no. 1, 2019,

doi:10.3390/chemengineering3010029

[13] W. Bing, L. Zheng, S. He, D. Rao, M. Xu, L. Zheng, B. Wang, Y. Wang, and M. Wei, "Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation," ACS Catalysis, vol. 8, no. 1, pp. 656-664, 2018,

doi: 10.1021/acscatal.7b03022.

[14] L. B. Kunde, S. M. Gade, V. S. Kalyani, and S. P. Gupte, "Catalytic synthesis of chalcone and flavanone using Zn–Al hydrotalcite adhere ionic liquid," Catalysis Communications, vol. 10, no. 14, pp. 1881-1888, 2009,

doi: 10.1016/j.catcom.2009.06.018.

[15] S. Saravanamurugan, M. Palanichamy, B. Arabindoo, and V. Murugesan, "Solvent free synthesis of chalcone and flavanone over zinc oxide supported metal oxide catalysts," Catalysis Communications, vol. 6, no. 6, pp. 399-403, 2005,

doi: 10.1016/j.catcom.2005.03.005.

[16] M. R. Sazegar, S. Mahmoudian, A. Mahmoudi, S. Triwahyono, A. A. Jalil, R. R. Mukti, N. H. N. Kamarudin, and M. K. Ghoreishi, "Catalyzed Claisen–Schmidt reaction by protonated aluminate mesoporous silica nanomaterial focused on the (E)-chalcone synthesis as a biologically active compound," RSC Advances, vol. 6, no. 13, pp. 11023-11031, 2016,

doi: 10.1039/C5RA23435B.

[17] S. d. Sebti, A. Solhy, R. Tahir, S. Boulaajaj, J. A. Mayoral, J. M. Fraile, A. Kossir, and H. Oumimoun, "Calcined sodium nitrate/natural phosphate: an extremely active catalyst for the easy synthesis of chalcones in heterogeneous media," Tetrahedron Letters, vol. 42, no. 45, pp. 7953-7955, 2001,

doi: 10.1016/S0040-4039(01)01698-7.

[18] R. Sasidharan, S. C. Baek, M. Sreedharannair Leelabaiamma, H. Kim, and B. Mathew, "Imidazole bearing chalcones as a new class of monoamine oxidase inhibitors," Biomedicine & Pharmacotherapy, vol. 106, pp. 8-13, 2018,

doi: 10.1016/j.biopha.2018.06.064.

.[19] W. Dan and J. Dai, "Recent developments of chalcoes as potential antibacterial agents in medicinal chemistry," Eur J Med Chem, vol. 187, p. 111980, 2020,

doi: 10.1016/j.ejmech.2019.111980.

[20] A.-M. Katsori and D. Hadjipavlou-Litina, "Recent progress in therapeutic applications of chalcones," Expert Opinion on Therapeutic Patents, vol. 21, no. 10, pp. 1575-1596, 2011,

doi:10.1517/13543776.2011.596529.

[21] R. Anandam, S. S. Jadav, V. B. Ala, M. J. Ahsan, and H. B. Bollikolla, "Synthesis of new C-dimethylated chalcones as potent antitubercular agents," Medicinal Chemistry Research, vol. 27, no. 6, pp. 1690-1704, 2018,

doi: 10.1007/s00044-018-2183-z.

[22] M. L. Bello, L. D. Chiaradia, L. R. S. Dias, L. K. Pacheco, T. R. Stumpf, A. Mascarello, M. Steindel, R. A. Yunes, H. C. Castro, R. J. Nunes, and C. R. Rodrigues, "Trimethoxy-chalcone derivatives inhibit growth of Leishmania braziliensis: synthesis, biological evaluation, molecular modeling and structure-activity relationship (SAR)," Bioorg Med Chem, vol. 19, no. 16, pp. 5046-52, 2011,

doi: 10.1016/j.bmc.2011.06.023.

[23] D. K. Mahapatra, V. Asati, and S. K. Bharti, "Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives," Eur J Med Chem, vol. 92, pp. 839-865, 2015,

doi: 10.1016/j.ejmech.2015.01.051.

[24] C. Marcovicz, G. d. Camargo, B. Scharr, L. Sens, M. N. Levandowski, T. d. Rozada, P. Castellen, J. Inaba, R. N. de Oliveira, J. C. Mine, S. d. P. Correa, S. M. Allegretti, and B. C. Fiorin, "Schistosomicidal evaluation of synthesized bromo and nitro chalcone derivatives," Journal of Molecular Structure, vol. 1258, pp. 132647, 2022,

doi:10.1016/j.molstruc.2022.132647.

[25] C. Chithiraikumar, K. V. Ponmuthu, M. Harikrishnan, N. Malini, M. Sepperumal, and A. Siva, "Efficient base-free asymmetric one-pot synthesis of spiro[indoline-3,3′-pyrrolizin]-2-one derivatives catalyzed by chiral organocatalyst," Research on Chemical Intermediates, vol. 47, no. 3, pp. 895-909, 2021,

doi: 10.1007/s11164-020-04303-8.

[26] E. I. Gasull, J. J. Silber, S. E. Blanco, F. Tomas, and F. H. Ferretti, "A theoretical and experimental study of the formation mechanism of 4-X-chalcones by the Claisen–Schmidt reaction," Journal of Molecular Structure: THEOCHEM, vol. 503, no. 3, pp. 131-144, 2000,

doi: 10.1016/S0166-1280(99)00256-0.

[27] L. S. R. Martelli, L. C. C. Vieira, M. W. Paixao, J. Zukerman-Schpector, J. O. de Souza, A. C. C. Aguiar, G. Olivia, R. V. C. Guido, and A. G. Correa, "Organocatalytic asymmetric vinylogous 1,4-addition of α,α-Dicyanoolefins to chalcones under a bio-based reaction media: Discovery of new Michael adducts with antiplasmodial activity," Tetrahedron, vol. 75, no. 25, pp. 3530-3542, 2019,

doi: 10.1016/j.tet.2019.05.022.

[28] R. E. Lyle and L. P. Paradis, "Acid-catalyzed Condensations. II.1 The Condensation of Benzaldehyde with Substituted Acetophenones," Journal of the American Chemical Society, vol. 77, no. 24, pp. 6667-6668, 1955,

doi: 10.1021/ja01629a094.

[29] H. D. Janse van Rensburg, L. J. Legoabe, and G. Terre'Blanche, "C3 amino-substituted chalcone derivative with selective adenosine rA1 receptor affinity in the micromolar range," Chemical Papers, vol. 75, no. 4, pp. 1581-1605, 2021,

doi: 10.1007/s11696-020-01414-9.

[30] A. Shrestha, A. Shrestha, P.-H. Park, and E.-S. Lee, "Hydroxyl- and Halogen-containing Chalcones for the Inhibition of LPS-stimulated ROS Production in RAW 264.7 Macrophages: Design, Synthesis and Structure–Activity Relationship Study," Bulletin of the Korean Chemical Society, vol. 40, no. 7, pp. 729-734, 2019,

doi: 10.1002/bkcs.11813.

[31] E. N. Okolo, D. I. Ugwu, B. E. Ezema, J. C. Ndefo, F. U. Eze, C. G. Ezema, J. A. Ezugwu, and O. T. Ujam, "New chalcone derivatives as potential anti-microbial and antioxidant agent," (in eng), Sci Rep, vol. 11, no. 1, pp. 21781, 2021,

doi: 10.1038/s41598-021-01292-5.

[32] S. Handani, H. Y. Teruna, and A. Zamri, "Sintesis Analog Kalkon (E)-3-(2-Klorofenil)-1(4’-metoksifenil)-prop-2-en-1-on dan Uji Tosisitas dengan Metode Brine Shrimp Lethal Test (BSLT)," J. Ind.Che.Acta, vol. 4, no. 1, 2013.

[33] I. Ikhtiarudin, N. Agistia, N. Frimayanti, T. Harlianti, and J. Jasril, "Microwave-assisted synthesis of 1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one and its activities as an antioxidant, sunscreen, and antibacterial," Jurnal Kimia Sains dan Aplikasi, vol. 23, no. 2, pp. 10, 2020,

doi: 10.14710/jksa.23.2.51-60.

Refbacks

  • There are currently no refbacks.