The Adsorption Performance and Characterization of Activated Charcoal of Bone Char Against Acid Orange 7

Siti Fatimah, Yazid Rijal Azinuddin

Abstract

The use of Acid Orange 7, a synthetic dye, in the textile industry harms the environment because it is carcinogenic. This research aims to remove the Acid Orange 7 dye dissolved in the water. This study used cow bone charcoal as an alternative adsorbent made by the carbonization method. In addition, the batch adsorption method was applied in the bleaching process of the synthetic dye waste, Acid Orange 7. Several tests, such as SEM, EDX, BET, XRD, and FTIR, were carried out to determine the characteristics and ability of activated charcoal from cow bones as an adsorbent for acid Orange 7 dye waste. Other organic adsorbents, such as graphene oxide and activated carbon, were used to compare the results. Bone char adsorption Acid Orange 7 62.2% efficiently. The adsorption efficiency of activated carbon is 79.8%, while graphene oxide has an adsorption rate of 89.4%. The findings revealed that bone char could be used to cure synthetic dye waste, Acid Orange 7, as an alternative. Additional treatment 

Keywords

Bone char; Azo Dyes; Acid Orange

Full Text:

PDF

References

[1] H. Patel, “Charcoal as an adsorbent for textile wastewater treatment,” Sep. Sci. Technol., vol. 53, no. 17, pp. 2797–2812, 2018,

doi: 10.1080/01496395.2018.1473880.

[2] A. Amiruddin, H. Hasri, and S. Sudding, “Biodegradasi Zat Warna Acid Orange 7 Menggunakan Enzim Jamur Tiram Putih (Pleurotus Ostreatus),” J. Kim. Ris., vol. 3, no. 1, p. 47, 2018,

doi: 10.20473/jkr.v3i1.8901.

[3] K. T. Chung, G. E. Fulk, and A. W. Andrews, “Mutagenicity testing of some commonly used dyes,” Appl. Environ. Microbiol., vol. 42, no. 4, pp. 641–648, 1981,

doi: 10.1128/aem.42.4.641-648.1981.

[4] J. Suhartono, C. Noersalim, P. L. Mustari, and D. M. Olivia, “Pengaruh Kecepatan Pengadukan pada Bleaching Minyak Dedak Padi Melalui Proses Adsorpsi Menggunakan Arang Tulang Aktif,” Pros. Semin. Nas. Tek. Kim. “‘Kejuangan,’” pp. B01-1-B01-6, 2011.

Google Scholar

[5] R. C. Bansal and M. Goyal, “Activated carbon adsorption,” Act. Carbon Adsorpt., no. May, pp. 1–472, 2005,

doi: 10.1680/bwtse.63341.147.

[6] Sadashiv Bubanale and M Shivashankar, “History, Method of Production, Structure and Applications of Activated Carbon,” Int. J. Eng. Res., vol. V6, no. 06, pp. 495–498, 2017,

doi: 10.17577/ijertv6is060277.

[7] M. . Tadda et al., “A Review on Activated Carbon from Biowaste : Process , Application and Prospects,” J. Adv. Civ. Eng. Pract. Res., vol. 5, no. 3, pp. 82–83, 2018.

Google Scholar

[8] M. R. Samarghandi, A. Poormohammadi, N. Fatemeh, and M. Ahmadian, “Removal of Acid Orange 7 from aqueous solution using activated carbon and graphene as adsorbents,” Fresenius Environ. Bull., vol. 24, no. 5A, pp. 1841–1851, 2015.

Google Scholar

[9] A. Rezaee, H. Rangkooy, A. Jonidi-Jafari, and A. Khavanin, “Surface modification of bone char for removal of formaldehyde from air,” Appl. Surf. Sci., vol. 286, pp. 235–239, 2013,

doi: 10.1016/j.apsusc.2013.09.053.

[10] V. Amalia, F. Layyinah, F. Zahara, and E. P. Hadisantoso, “Potensi Pemanfaatan Arang Tulang Ayam sebagai Adsorbent Logam berat Cu dan Cd,” al-Kimiya, J. Ilmu Kimia & Terapan, vol. 4, no. 1, pp. 31-37, 2017,

doi: 10.15575/ak.v4i1.5081.

[11] H. Alfiany, S. Bahri, and Nurakhirawati, “Kajian Penggunaan Arang Aktif Tongkol Jagung Sebagai Adsorben logam Pb Dengan Beberapa Aktivator Asam,” J. Nat. Sci., vol. 2, no. 3, pp. 75–86, 2013, doi: 10.22487/25411969.2013.v2.i3.1869.

[12] S. M. Manocha, “Porous carbons,” Sadhana - Acad. Proc. Eng. Sci., vol. 28, no. 1–2, pp. 335–348, 2003,

doi: 10.1007/BF02717142.

[13] M. ASHARI YUSUF, “Adsorpsi Ion Cr(Vi) Oleh Arang Aktif Sekam Padi (Adsorption Ions of Cr (Vi) By Active Rice Husk Charcoal),” UNESA J. Chem., vol. 2, no. 1, pp. 84–88, 2013.

Google Scholar

[14] S. Musdalifah, Syamsidar, and Suriani, " Dekolagenasi Limbah Tulang Paha Ayam Broiler (Gallus domesticus) oleh Natrium Hidroksida (NaOH) untuk Penentuan Kadar Kalsium (Ca) dan Fosfat (PO4)," Al-Kimia, vol. 4, no. 2, pp. 172-184, 2016,

doi: 10.24252/al-kimia.v4i2.1682.

[15] F. Zhao et al., “Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds,” Biomaterials, vol. 23, no. 15, pp. 3227–3234, 2002,

doi: 10.1016/S0142-9612(02)00077-7.

[16] E. M. Nigri et al., “Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies,” Environ. Sci. Pollut. Res., vol. 24, no. 3, pp. 2364–2380, 2017,

doi: 10.1007/s11356-016-7816-5.

[17] W. Huang, H. Zhang, Y. Huang, W. Wang, and S. Wei, “Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors,” Carbon N. Y., vol. 49, no. 3, pp. 838–843, 2011, doi: 10.1016/j.carbon.2010.10.025.

[18] I. Kuttalam, G. Subramani, G. S. Elvakumar, and L. Suguna, “Preparation of high surface area activated carbon from cow bone for the development of lead carbon (Pb-C) batteries for hybrid vehicle applications,” in 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Sep. 2017, pp. 2248–2254,

doi: 10.1109/ICPCSI.2017.8392117.

[19] D. N. K. P. Negara, T. G. T. Nindhia, I. W. Surata, F. Hidajat, and M. Sucipta, “Nanopore structures, surface morphology, and adsorption capacity of tabah bamboo-activated carbons,” Surfaces and Interfaces, vol. 16, pp. 22–28, 2019,

doi: 10.1016/j.surfin.2019.04.002.

[20] Nwankwo I H, N. E. Nwaiwu, and Nwabanne, “Production And Characterization Of Activated Carbon From Animal Bone,” Am. J. Eng. Res. (AJER, no. 7, pp. 335–341, 2018.

Google Scholar

[21] P. Barpanda, G. Fanchini, and G. G. Amatucci, “Structure, surface morphology and electrochemical properties of brominated activated carbons,” Carbon N. Y., vol. 49, no. 7, pp. 2538–2548, 2011,

doi: 10.1016/j.carbon.2011.02.028.

[22] C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, and P. Magri, “Preparation and characterization of activated carbon from animal bones and its application for removal of organic micropollutants from aqueous solution,” Desalin. Water Treat., vol. 57, no. 52, pp. 25070–25079, 2016, doi: 10.1080/19443994.2016.1151379.

[23] Yuliusman, M. Fatkhurrahman, S. P. Sipangkar, F. Alfaruq, and S. A. Putri, “Utilization of cassava peel waste in the preparation of activated carbon by chemical activators of KOH and NaOH,” AIP Conf. Proc., vol. 2255, no. September, 2020,

doi: 10.1063/5.0014404.

[24] E. Khosla, S. Kaur, and P. N. Dave, “Mechanistic study of adsorption of acid orange-7 over aluminum oxide nanoparticles,” J. Eng. (United Kingdom), vol. 2013, 2013,

doi: 10.1155/2013/593534.

[25] J. B. Parra, J. C. Sousa, R. C. Bansal, J. J. Pis, and J. A. Pajares, “Characterization of activated carbons by BET equation,” Adsorpt. Sci. Technol., vol. 12, no. January 1995, pp. 51–66, 1995.

Google Scholar

[26] E. Inam, J. B. Edet, P. Akpan, and K. Ite, “Characterization and equilibrium studies for the removal of methylene blue from aqueous solution using activated bone char,” vol. 11, no. 10, pp. 1667–1675, 2020,

doi: 10.21203/rs.3.rs-21628/v1.

[27] R. L. Ramos and N. A. M. C. J. V. F. Cano, “Bone Char : Adsorbent Manufactured from Animal Bones Waste Adsorption of Fluoride from Aqueous Solution.,” Bol. Grup. Esp. Carbon, vol. 36, no. June, pp. 2–6, 2015.

Google Scholar

[28] A. L. Cazetta et al., “Thermally activated carbon from cow bone: Optimization of synthesis conditions by response surface methodology,” J. Anal. Appl. Pyrolysis, vol. 110, no. 1, pp. 455–462, 2014,

doi: 10.1016/j.jaap.2014.10.022.

[29] K. Vinodgopal, D. E. Wynkoop, and P. V. Kamat, “Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, Acid Orange 7, on TiO2 particles using visible light,” Environ. Sci. Technol., vol. 30, no. 5, pp. 1660–1666, 1996,

doi: 10.1021/es950655d.

[30] L. Lucarelli, V. Nadtochenko, and J. Kiwi, “Environmental photochemistry: quantitative adsorption and FTIR studies during the TiO2-photocatalyzed degradation of Orange II,” Langmuir, vol. 16, no. 3, pp. 1102–1108, 2000,

doi: 10.1021/la990272j.

[31] G. K. Ramesha, A. Vijaya Kumara, H. B. Muralidhara, and S. Sampath, “Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes,” J. Colloid Interface Sci., vol. 361, no. 1, pp. 270–277, 2011,

doi: 10.1016/j.jcis.2011.05.050.

Refbacks

  • There are currently no refbacks.