Development of Chemical Learning Electronic Module Based on Multiple Representation in The Redox Topic

Septian Arfan, Nurfina Aznam


The advent of the COVID-19 pandemic in 2020 significantly shifted educational paradigms, necessitating the adoption of online learning modalities. This study, rooted in the contextual changes brought by the pandemic, aimed to evaluate the effectiveness, quality, and impact of a Mixed Reality (MR) e-module on redox reaction topics in a high school setting. The research followed a 4D model (Define, Design, Develop, Disseminate) but was confined to the development phase.Conducted in a High School in Yogyakarta, Indonesia, this study involved 98 students (30 from grade 12 and 68 from grade 11), 3 teachers, and 2 validators. The research methodology included pre-tests and post-tests, alongside questionnaires to gather data. Descriptive statistical analysis was employed to process the assessments from validators, teachers, student responses, and test results.The field trial results indicated that the MR e-module for chemistry learning was deemed satisfactory and effective by the respondents. The analysis of the test of between-subject effect revealed no significant differences in interest and pre-test learning achievement between control and experimental groups. However, post-test results showed notable differences in interest and learning achievements, favoring the experimental group exposed to the MR e-module.The effectiveness of the MR e-module was quantified using partial eta squared calculations. The MR e-module contributed 25.7% effectively to both learning interest and achievement. When considered separately, the contribution was 2.7% for learning interest and 21.9% for learning achievement. These findings underscore the potential of MR e-modules as valuable educational tools, enhancing both student engagement and academic performance in online learning environments during the COVID-19 pandemic.


E-module; multiple representation; redox.

Full Text:



[1] A. Yurianto, "Pedoman pencegahan dan pengendalian coronavirus disesase (COVID-19)," Kementrian Kesehatan Republik Indonesia, 2020.

[2] W. Dewi, "Dampak Covid-19 terhadap implementasi pembelajaran daring di sekolah dasar," Edukatif: Jurnal Ilmu Pendidikan, vol. 2, no. 1, pp. 1-112, 2020,

doi: 10.31004/edukatif.v2i1.89.

[3] M. Rau, "Enhancing undergraduate chemistry learning by helping students make connections among multiple graphical representations," Chemistry Education Research and Practice, vol. 16, no. 3, pp. 654-669, 2015,

doi: 10.1039/C5RP00065C.

[4] F. Lawrenz, "Misconceptions of physical science concepts among elementary school teachers," Sch. Sci. Math., vol. 86, no. 8, pp. 654–660, Dec. 1986,

doi: 10.1111/j.1949-8594.1986.tb11669.

[5] B. Hong Kwen, "Teachers’ misconceptions of biological science concepts as revealed in science examination papers," Int. Educ. Res. Conf., no. December, pp. 1–8, 2005.

[6] R. Tasker, "The VisChem Project: Molecular level animations in chemistry-potential and caution," UniServe Sci. News, vol. 9, pp. 12–16, 1998.

[7] I. Eilks, T. Witteck, and V. Pietzner, "The role and potential dangers of visualisation when learning about sub-microscopic explanations in chemistry education," CEPS J., 2012.

[8] A. Bergqvist, Models of chemical bonding and crystal structure. Karlstad: Karlstad University, 2012,

ISBN: 9789170634635.

[9] M. Stojanovska, V. M. Petruševski, and B. Šoptrajanov, "Study of the use of the three levels of thinking and representation," Contrib. Sect. Nat. Math. Biotech. Sci., vol. 35, no. 1, pp. 37–46, 2017,

doi: 10.20903/csnmbs.masa.2014.35.1.52

[10] S.S. Miswadi et al., "Peningkatan hasil belajar kimia melalui pembelajaran berbantuan komputer dengan media chemo-edutainment," National Scientific Journal of Unnes, vol. 2, no. 1, pp. 182-189, 2008,

doi: 10.15294/jipk.v2i1.1217.

[11] N. Herawati and A. Muhtadi, "Pengembangan modul elektronik (E-Modul) interaktif pada mata pelajaran kimia kelas XI SMA," Jurnal Inovasi Teknologi Pendidikan, vol. 5, no. 2, pp. 180-191, 2008,

doi: 10.21831/jitp.v5i2.15424.

[12] R. Samiasih et al., "Pengembangan e-modul mata pelajaran ilmu pengetahuan alam pokok bahasan interaksi mahluk hidup dengan lingkungan," Edcomtech, vol. 2, no. 2, pp. 119-124, 2017.

[13] D. Sugianto et al., "Modul virtual: Multimedia flipbook dasar teknik digital," Innovation of Vocational Technology Education, vol. 9, no. 2, pp. 101-116, 2018,

doi: 10.17509/invotec.v9i2.4860.

[14] Lasmiyati and I. Harta, "Pengembangan modul pembelajaran untuk meningkatkan pemahaman konsep dan minat SMP," PHYTAGORAS. Jurnal Pendidikan Matematika, vol. 9, no. 2, pp. 161-174, 2014,

doi: 10.21831/pg.v9i2.9077.

[15] N. Permana, "Pemakaian modul pembelajaran sejarah di SMA N 6 Padang," Jurnal Pendidikan Sejarah, vol. 5, no. 2, pp. 43-44, 2016,

doi: 10.21009/JPS.052.04.

[16] E. Pornamasari, "Pengembangan modul pembelajaran berbantu flipbook maker dengan model pembelajaran Numbered Heads Together (NHT) berbasis teori Vygotsky materi pokok Relasi Fungsi," AKSIOMA: Jurnal Matematika dan Pendidikan Matematika, pp. 74-83, 2016,

doi: 10.26877/aks.v7i1.1412.

[17] M. Baptista, I. Martins, T. Conceicao, and P. Reis, "Multiple representations in the development of student cognitive structures about the saponification reaction," Chemistry Education Research and Practice, vol. 20, no. 4, pp. 1-12, 2019,

doi: 10.1039/C9RP00018F.

[18] S. Ainsworth, “Deft: A conceptual framework for considering learning with multiple representations,” Learning and Instruction, vol. 16, no. 3, pp. 183-198, 2006,

doi: 10.1016/j.learninstruc.2006.03.001.

[19] V. Gkitzia, K. Salta, and C. Tzougraki, “Students’ competence in translating between different types of chemical representations,” Chemistry Education Research and Practice, Royal Society of Chemistry, pp. 1-24, 2019,

doi: 10.1039/c8rp00301g.

[20] Z. D. R. Allred and S. L. Bretz, “University chemistry students’ interpretations of multiple representations of the helium atom,” Chemistry Education Research and Practice, Royal Society of Chemistry, pp. 2, 2019,

doi: 10.1039/c8rp00296g.

[21] H. Tümay, "Reconsidering learning difficulties and misconceptions in chemistry: Emergence in chemistry and its implications for chemical education," Chemistry Education Research and Practice, vol. 17, no. 2, pp. 229-245, 2016,

doi: 10.1039/C6RP00008H.

[22] B. Bucat and M. Mocerino, "Learning at the Sub-micro Level: Structural Representations," Multiple Representations in Chemical Education, pp. 11–29, 2009,

doi: 10.1007/978-1-4020-8872-8_2.

[23] A. H. Johnstone, "Why is science difficult to learn? Things are seldom what they seem," J. Comput. Assist. Learn., vol. 7, no. 2, pp. 75–83, 1991,

doi: 10.1111/j.1365-2729.1991.tb00230.x.

[24] A. H. Johnstone, "Chemistry teaching - science or alchemy?," J. Chem. Educ., vol. 74, no. 3, pp. 262–268, 1997,

doi: 10.1021/ed074p262.

[25] A. H. Johnstone, "Chemical education research in Glasgow in perspective," Chem. Educ. Res. Pract., vol. 7, no. 2, pp. 49–63, 2006,

doi: 10.1021/ed074p262.

[26] A. H. Johnstone, "You can’t get there from here," J. Chem. Educ., vol. 87, no. 1, pp. 22–29, 2010,

doi: 10.1021/ed800026d.

[27] S. N. Afifah, L. Mahardiani & B. Utami, "A content analysis of pictorial material in the chemistry textbooks on the topic redox reaction based on chemical representation," JKPK (Jurnal Kimia dan Pendidikan Kimia), vol. 8, no. 1, pp. 37-48, 2023,

doi: 10.20961/jkpk.v8i1.72885.

[28] N. Minkley et al., "Students’ mental load, stress, and performance when working with symbolic or symbolic–textual molecular representations," Journal of Research in Science Teaching, vol. 55, no. 8, pp. 1-26, 2018,

doi: 10.1002/tea.21446.

[29] I. R. Lubis and J. Ikhsan, "Pengembangan media pembelajaran kimia berbasis android untuk meningkatkan motivasi belajar dan prestasi kognitif peserta didik SMA," Jurnal Inovasi Pendidikan IPA, vol. 1, no. 2, pp. 191-201, 2015,

doi: 10.21831/jipi.v1i2.7504.

[30] R. Yektyastuti and J. Ikhsan, "Pengembangan media pembelajaran berbasis android pada materi kelarutan untuk meningkatkan performa akademik peserta didik SMA," Jurnal Inovasi Pendidikan IPA, vol. 2, no. 1, pp. 88-99, 2016,

doi: 10.21831/jipi.v2i1.10289.

[31] Sunyono, Model Pembelajaran Multipel Representasi. Yogyakarta: Media Akademi, 2015,

ISBN: 9786027365827.

[32] A. L. Chandrasegaran, D. F. Treagust, and M. Mocerino, “Facilitating high school students’ use of multiple representations to describe and explain simple chemical reactions,” Teach. Sci., vol. 57, no. 4, pp. 13–20, 2011.

[33] R. F. Nikat, “Exploration of students’ argumentation skill assisted format representation in solving electrical concept,” J. Pendidik. SAINS, vol. 9, no. 1, pp. 42–50, 2021,

doi: 10.26714/jps.9.1.2021.42-50.

[34] N. Hanif, W. Sopandi & A. Kusrijadi, “Analisis Hasil Belajar Level Makroskopik, Submikroskopik, dan Simbolik Berdasarkan Gaya Kognitif Siswa SMA pada Materi Pokok Sifat Koligatif Larutan,” Jurnal Pengajaran MIPA, vol. 18, no. 1, 2013,

doi: 10.18269/jpmipa.v18i1.36126.

[35] N. Afni & M. Azhar, “Macroscopic, submicroscopic and symbolic representations-integrated PowerPoint-iSpring learning media on stoichiometry: Validity and practicality levels,” AIP Conf. Proc., vol. 2673, 2023,

doi: 10.1063/5.0125718.

[36] I M. Suarsana & G.A. Mahayukti, “Pengembangan E-Modul Berorientasi Pemecahan Masalah untuk Meningkatkan Keterampilan Berpikir Kritis Mahasiswa,” Jurnal Pendidikan Indonesia, vol. 2, no. 2, pp. 264-275, 2013,

doi: 10.23887/jpi-undiksha.v2i2.2171.

[37] A. Prasetya, “Electronic module development with project-based learning in web programming courses,” IJCIS, vol. 02, no. 3, pp. 69, 2021,

doi: 10.29040/ijcis.v2i3.38.

[38] M.A. Khairi and J. Ikhsan, "Development of guided inquiry-based electronic modules and its effects on students' chemical literacy," JKPK (Jurnal Kimia dan Pendidikan Kimia), vol. 7, no. 2, pp. 181-193, 2022,

doi: 10.20961/jkpk.v7i2.62319.

[39] G. A. Irawan et al., "Instructional materials development through 4D model," SHS Web of Conferences, vol. 42, no. 4, pp. 1-4, 2018,

doi: 10.1051/shsconf/20184200086.

[40] S. Thiagarajan, D. Semmel, and M. Semmel, Instructional development for training teachers of exceptional children: a sourcebook. Minnesota: Leadership Training Institute/Special Education, 1974,

ISBN: 9780865860452.

[41] T. I. B. Al-Tabany, Mendesain model pembelajaran inovatif progresif. Kencana Prenada Media Group, 2010,

ISBN: 9786021186053.

[42] R. J. Adams and S.T. Khoo, Quest: The interactive test analysis system, Victoria: Australian Council for Educational Research, 1993.

[43] T. W. Anderson, An Introduction to Multivariate Statistical Analysis Third Edition. John Wiley & Sons, Inc., 2003,

ISBN: 9788126524488.

[44] R. Hake, “Interactive-engagement versus traditional methods: A six thousand student survey of mechanics test data for introductory physics course,” Am. J Phys., vol. 66, no. 1, pp. 64-74, 1998,

doi: 10.1119/1.18809.

[45] J. T. Mordkoff, “A simple method for removing bias from a popular measure of standardized effect size: Adjusted Partial Eta Squared,” Advances in Methods and Practices in Psychological Science, 2019,

doi: 10.1177/2515245919855053.

[46] T. A. Holmy and K. L. Murphy, “The ACS Exams Institute undergraduate chemistry anchoring concepts content map I: general chemistry,” J. Chem. Educ., vol. 89, no. 6, pp. 721-723, 2015,

doi: 10.1021/ed300050q.

[47] G. Chittleborough and D. F. Treagust, “The modelling ability of non-major chemistry students and their understanding of the sub-microscopic level,” Chem. Educ. Res. Pract., vol. 8, no. 3, pp. 274-292, 2007,

doi: 10.1039/B6RP90035F.

[48] Y. Kowitlawakul, M. F. Chang, S. S. L. Tan, A. S. K. Soong, and S. W. C. Chan, “Development of an e-learning research module using multimedia instruction approach,” CIN: Computers, Informatics, Nursing, vol. 35, no. 3, pp. 158-166, 2017,

doi: 10.1097/CIN.0000000000000306.

[49] Lomness, S. Lacey, A. Brobbel, and T. Freeman, “Seizing the opportunity: Collaborative creation of academic integrity and information literacy LMS modules for undergraduate chemistry,” The Journal of Academic Librarianship, vol. 47, no. 3, 2021,

doi: 10.1016/j.acalib.2021.102328.

[50] L. B. Mirnawati, “Keefektifan Model Pembelajaran Inovatif dengan Menggunakan Mind Mapping dalam Pembelajaran Menulis Narasi Siswa SD,” Belajar Bahasa, vol. 4, no. 1, 2019,

doi: 10.32528/bb.v4i1.1868.

[51] D. C. Brighs, "The effect of admissions test preparation: Evidence from NELS:88," CHANCE, vol. 14, no. 1, pp. 10-18, 2001,

doi: 10.1080/09332480.2001.10542245.

[52] N. S. S. Siregar, "Kajian tentang interaksionisme simbolik," Jurnal Ilmu Sosial Fakultas ISIPOL UMA, vol. 4, no. 2, pp. 100-110, 2012,

doi: 10.31289/perspektif.v1i2.86.

[53] M. Paristiowati, E. V. Nanda, N. A. P. H. Hasibuan, M. Z. Ilmana, "Analysis of students’ critical thinking skills by applying flipped classroom learning model by using PowToon application on the topic of salt hydrolysis," JKPK (Jurnal Kimia dan Pendidikan Kimia), vol. 7, no. 3, pp. 379-393, 2022,

doi: 10.20961/jkpk.v7i3.67802.

[54] D. Sutisna, A. Widodo, N. Nursaptini, U. Umar, M. Sobri, D. Indraswati, "An analysis of the use of smartphone in students’ interaction at senior high school," Advances in Social Science, Education and Humanities Research, vol. 465, pp. 221-224, 2019,

doi: 10.2991/assehr.k.200827.055.

[55] H.D. Ayu, S. Saputro, Sarwanto, S. Mulyani, "Meta-analysis of the relationship between learning media in hybrid learning and critical thinking and creativity in science," JKPK (Jurnal Kimia dan Pendidikan Kimia), vol. 8, no. 2, pp. 221-234, 2023,

doi: 10.20961/jkpk.v8i2.66855.


  • There are currently no refbacks.