Highly Selective and Sensitive Determination of Hg(II) Ions Using Ion Selective Electrodes (ISE) Coated with the BEC4ND1 Ionophore as Membranes

Nasriadi Dali, Seniwati Dali, Armadi Chairunnas, Hilda Ayu Melvi Amalia, Sri Ayu Andini Puspitasari

Abstract

The research on the highly selective and sensitive determination of Hg(II) ions using ion-selective electrodes (ISE) coated with the BEC4ND1 ionophore as a membrane has been successfully carried out. ISE was designed using the membrane composition of the [(BEC4ND1 ionophore : PTCPB : DOS : PVC) (3 : 2 : 60 : 35 % w/w)]. The ESI-BEC4ND1 ionophore has good characteristics where it shows a sensitivity value of 29.933 mV/decade in the Hg(II) ion concentration range of 10-9 - 10-1 M with a limit of detection (LoD) of 10-7 M. The response time obtained is in the range of 4 - 8 minutes with a relative standard deviation (RSD) of 0.548. The ESI-BEC4ND1 ionophore also shows the average value of selectivity coefficient (Kij) < 1. These results indicate that the presence of Zn(II), Cd(II), and Pb(II) ions as interfering ions in the analyte solution does not affect the performance of the ESI-BEC4ND1 ionophore in detecting Hg(II) ions. The ESI-BEC4ND1 ionophore that has been developed shows good selectivity, sensitivity, stability, and reproducibility, so the ESI-BEC4ND1 ionophore is promising to be used as a Hg(II) ion detector in the environment.

Keywords

BEC4ND1 ionophore; calix[4]arene; ISE-Hg(II); membrane, selective.

Full Text:

PDF

References

[1] T. Ninomiya, H. Ohmori, K. Hashimoto, K. Tsuruta, and S. Ekino, “Expansion of Methylmercury Poisoning Outside of Minamata: an Epidemiological Study on Chronic Methylmercury Poisoning Outside of Minamata,” Environ Res., vol. 70, no. 1, pp.47-50, 1995.

DOI: 10.1006/enrs.1995.1045.

[2] M. Harada, J. Nakanishi, S. Konuma, K. Ohno, T. Kimura, H. Yamaguchi, K. Tsuruta, T. Kizaki, T. Ookawara, and H. Ohno, “The Present Mercury Contents of Scalp Hair and Clinical Symptoms in Inhabitants of the Minamata Area,” Environ Res., vol. 77, no. 2, pp.160-164, 1998.

DOI: 10.1006/enrs.1998.3837.

[3] S. Ekino, M, Susa, T. Ninomiya, K. Imamura, and T. Kitamura, “Minamata Disease Revisited an Update on the Acute and Chronic Manifestations of Methylmercury Poisoning,” J. Neurol Sci., vol. 262, no. 1-2, pp. 131-144, 2007.

DOI: 10.1016/j.jns.2007.06.036.

[4] J. E. Brady, General Chemistry: Principles & Structure, 5th Ed., New York: John Wiley & Sons, 1990.

ISBN: 9780471867395.

[5] I. Y. Oleg, V. C. Tetyana, N. B. Alexandr, and A. K. Oleksii, “Analysis of Water and Bottom Sediments of the Tiger River (Iraq) Using Ultrasonic Treatment, Nonionic Surface Active Substances and b-Diketonates of Metals as Standard Samples,” J. Chem. Tech., vol. 29, no. 2, pp. 173-178, 2021, DOI: 10.15421/jchemtech.v29i2.214575.

[6] S. Kristianingrum, “Modifikasi Metode Analisis Spesiasi Merkuri dalam Lingkungan Perairan,” Proceedings of the National Seminar on Research, Education, and Application of Mathematics and Natural Sciences, pp. 72-75, 2007.

Google Scholar

[7] Z. Alfian and Chairuddin, “Mercury Metals Analysis Method with Atomic Absorption Spectrophotometer which CVHGA Technics Coupled with the Commercial and Modified,” J. Teknologi Proses, vol. 7, no.1, pp. 40-44, 2008.

Google Scholar

[8] Y. Chen, X. Dong, Y. Dai, Q. Hu, and H. Yu, “Determination of Trace Mercury in Chinese Herbal Medicine by Cold Vapour Generation Atomic Fluorescence Spectrometry,” Asian Journal of Chemistry, vol. 20, no. 6, pp. 4639-4646, 2008.

Google Scholar

[9] M. F. Silva, I. V. Toth, and A. O. S. S. Rangel, “Determination of Mercury in Fish by Cold Vapor Atomic Absorption Spectrophotometry Using a Multicommuted Flow Injection Analysis System,” Analytical Sciences: The Japan Society for Analytical Chemistry, vol. 22, no. 1, pp. 342-347, 2006.

DOI: 10.2116/analsci.22.861.

[10] D. Zhang, L. Yang, and H. Sun, “Determination of Mercury by Cold Vapour Atomic Absorption Spectrometry with Derivative Signal Processing,” J. Anal. Chim. Acta., vol. 395, no. 1, pp. 173-178, 1999.

DOI: 10.2116/analsci.16.1309.

[11] A. Masykur, I. Noviandri, and Buchari, “Usia Pakai dan Pengaruh Oksidator-Reduktor pada Potensial Elektroda Selektif Ion (ESI) Hidrogen dengan Bahan Aktif Antimoni," ALCHEMY Jurnal Penelitian Kimia, vol. 1, no. 2, pp. 7-19. 2002.

Google Scholar

[12] L. P. Bailey, Analysis with Selective Electrodes, New York: Heiden & Sons, Ltd., 1996.

ISBN: 978-0855012236.

[13] A. W. Wahab, Buchari, A. Upe, and M. N. Jalaluddin, “The Effect of Membrane Composition Based PVC Toward Performance Ion Selective Electrode (ISE) Hg(II) Using Ionophores DBDA18C6,” Engineering Research Journal, vol. 11, no. 3, pp. 305-469, 2005.

[14] N. Dali, A. W. Wahab, Firdaus, and Maming, “Sintesis heksa-p-tert­-butilheksaesterkaliks[6]arena dari p-tert-butilkaliks[6]arena,” Al-Kimia Journal of Chemistry, vol. 3, no. 1, pp. 103-109, 2015.

DOI: 10.24252/al-kimia.v3i1.1665.

[15] N. Dali, S. Dali, A. Chairunnas, H. A. M. Amalia, S. A. A. Puspitasari, “Synthesis of the BETAC4ND5 Ionophore from p-tButylcalix[4]arene Ethylesteramide,” AIP Conference Proceedings, vol. 2638, no. 1, pp. 060005-1 – 060005-10, 2022, DOI: 10.1063/5.0104714.

[16] N. Dali, A. W. Wahab, Firdaus, Maming, and M. Nurdin, “Synthesis of Hexa(p-tert-butyl)hexa(carboxylicacid)calix[6]-arene from Hexa(p-tert-butyl)hexa(ethyl ester)calix[6]arene,” International Journal of ChemTech Research, vol. 9, no. 7, pp. 486-490, 2016.

Google Scholar

[17] I. P. Awaluddin, A. W. Wahab, and Maming, “Ion Selective Electrode Design for Metal Lead(II) [(ESI-Pb(II)] Using Ionophores p-tert-Butylcalix[4]arene,” Al-Kimia Journal of Chemistry, vol. 3, no. 1, pp. 24-33, 2015.

DOI: 10.24252/al-kimia.v3i1.1658.

[18] J. L. Bigman, and K. A. Reinhardt, “Monitoring of Chemicals and Water, Handbook of Silicon Wafer Cleaning Technology,” Elsevier Inc., 2018.

DOI: 10.1016/B978-0-323-51084-4.00011-3.

[19] G. D. Christian, P. K. Dasgupta, and A. S. Kevin, Analytical Chemistry, 7th Ed., New York: John Wiley & Sons, 2014.

DOI: 10.1021/ed063pa277.3.

[20] H. Mark and J. Workman, “Limitations in Analytical Accuracy: Part 1,” Chemometrics in Spectroscopy, H. Trumpet, 2nd Ed,. Elsevier Inc., 2018.

DOI: 10.1016/b978-0-12-805309-6.00072-6.

[21] Suryanta, “Mechanism of Lantanum Metal Transport in Membran Liquid with Carrier Senyawa Macrosiklis” Jurnal Penelitian Saintek, vol. 8, no. 1, pp. 81-94, 2013.

DOI: 10.21831/jps.v8i2.5560.

[22] Suyanta, “Determination Defined Selectivity Ion Selective Electrode System MPM Potentiometric Method,” Saintek Research Journal, vol. 8, no. 1, pp. 81-94, 2016.

Google Scholar

[23] A. Karim, D. Salama, and N. Ode, “Pengaruh Asam Amino Glisin dan Histidin Terhadap Nilai Koefisien Selektivitas EKT Polipirol-Glutamat Sebagai Sensor Potensiometrik,” Indonesia Chimica Acta, vol. 2, no. 2, pp. 27-36, 2009.

DOI: 10.20956/ica.v2i2.2461.

[24] J. B. Lambert, S. Gronert, H. F. Shurvell, and D. A. Lightner, Organic Structural Spectroscopy, 2nd Ed., New Jersey: Pearson Prentice Hall, 2011.

ISBN: 9781292054056.

[25] N. Dali, A. Dali, and S. Dali, “Synthesis of the BCAC4ND2 Ionophore from p-t-Butylcalix[4]arene Ethylester,” Akta Kimindo, vol. 5, no. 1, pp. 33-42, 2020. DOI: 10.12962/j25493736.v5i1.6711.

[26] N. Dali, A. Dali, S. Dali, and H. A. M. Amalia, “Synthesis of the BEAC4ND4 Ionophore from p-t-Butylcalix[4]arene Carboxylic Acid,” Jurnal Kimia Sains dan Aplikasi, vol. 23, no. 12, pp. 424-431, 2020.

DOI: 10.14710/jksa.23.12.424431.

[27] W. Kemp, Organic Spectroscopy, 3rd Ed.. London: MacMillan Education Ltd., 1991.

DOI: 10.1007/978-1-349-15203-2.

[28] H. Sastrohamidjojo, Spektroskopi resonansi magnetik inti. 1st Ed., Yogyakarta: Liberty, 1994.

ISBN: 979-499-166-X.

[29] N. Kamal, “Pengaruh Bahan Aditif CMC (Carboxyl Methyl Cellulose) terhadap Beberapa Parameter pada Larutan Sukrosa,” Jurnal Teknologi, vol. 1, no. 1, pp. 78-85, 2010.

Google Scholar

[30] S. K. Vashist and J. H. T. Luong, “Bioanalytical Requirements and Regulatory Guidelines for Immunoassays,” Handbook of Immunoassay, Technologies, Approaches, Performances, and Applications, Elsevier Inc., 2018.

DOi: 10.1016/B978-0-12-811762-0.00004-9.

[31] M. Nurdin, N. Dali, I. Irwan, M. Maulidiyah, Z. Arham, R. Ruslan, B. Hamzah, S. Sarjuna, and D. Wibowo, “Selectivity Determination of Pb2+ Ion Based on TiO2-Ionophores BEK6 as Carbon Paste Electrode Composite,” Anal. Bioanal. Electrochem., vol. 10, no. 12, pp. 1538-1547, 2018.

Google Scholar

[32] M. Mashuni, H. Ritonga, M. Jahiding, and F. H. Hamid, “Sintesis Kitosan dari Kulit Udang sebagai Bahan Membran Elektrode Au/Kitosan/GTA/AChE untuk Deteksi Pestisida,” ALCHEMY Jurnal Penelitian Kimia, vol. 18, no. 1, pp. 112-121, 2022.

DOI: 10.20961/alchemy.18.1.56551.112-121.

[33] A. N. Kadir, “Selektivitas Transpor Kaliks[4]arena dan Kaliks[6]arena Karboksilat Terhadap Fe3+ dari Campuran Fe, Ni, dan Cr Melalui Membran Cair Ruah 1,2-Dikloroetana,” Jurnal Ilmiah dr. Aloei Saboe, vol. 1, no. 2, pp. 1-6, 2014.

[34] J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, 3rd Ed., Cambridge: Harper International SI Edition, 2018.

ISBN: 9780060429959.

[35] C. D. Gutsche, Calixarenes, Revised, The Royal Society of Chemistry (Series Editor: J. Fraser Stoddart, FRS), USA, 1998.

DOI: 10.1039/9781847550293.

[36] W. L. Jolly, Modern Inorganic Chemistry. 2nd Ed., New York: McGraw-Hill, 1991.

ISBN: 9780070327689.

[37] Maming, Jumina, D. Siswanta, and H. Sastrohamidjojo, “Transport of Cr3+, Cd2+, Pb2+, and Ag+ Ions Through Bulk Liquid Membrane Containing p-tert-Butylcalix[4]arene Tetracarboxylic Acid as Ion Carrier,” Indo. J. Chem., vol. 7, no. 1, pp. 172-179, 2007.

DOI: 10.22146/ijc.21694.

Refbacks

  • There are currently no refbacks.